Phosphorus (P) loadings to the Great Lakes have been regulated for decades, but re-eutrophication and seasonal hypoxia have recently been increasingly reported. It is of paramount importance to better understand the fate, transformation, and biogeochemical cycling processes of different P species across the river-lake interface. We report here results on chemical speciation of P in the seasonally hypoxic Fox River-Green Bay system and variations in sources and partitioning of P species along the aquatic continuum. During midsummer when productivity is generally high, phosphate and dissolved organic P (DOP) were the major species in river water while particulate-organic-P predominated in open bay waters, showing a dynamic change in the chemical speciation of P along the river-bay transect with active transformations between inorganic and organic P and between colloidal and particulate phases. Colloidal organic P (COP, >1 kDa) comprised 33‒65% of the bulk DOP, while colloidal inorganic P was generally insignificant and undetectable especially in open bay water. Sources of COP changed from mainly allochthonous in the Fox River, having mostly smaller sized colloids (1-3 kDa) and a lower organic carbon to phosphorus (C/P) ratio, to predominantly autochthonous in open bay waters with larger sized colloids (>10 kDa) and a higher organic C/P ratio. The observed high apparent distribution coefficients (K) of P between dissolved and particulate phases and high-abundant autochthonous colloidal and particulate organic P in the hypereutrophic environment suggest that, in addition to phosphate, colloidal/particulate organic P may play a critical role in the biogeochemical cycling of P and the development of seasonal hypoxia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117025DOI Listing

Publication Analysis

Top Keywords

colloidal particulate
12
particulate phases
12
open bay
12
organic
8
seasonal hypoxia
8
biogeochemical cycling
8
chemical speciation
8
bay waters
8
sized colloids
8
c/p ratio
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!