A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Atomic Layer Deposition of a Nanometer-Thick LiPO Protective Layer on LiNiMnO Films: Dream or Reality for Long-Term Cycling? | LitMetric

Atomic Layer Deposition of a Nanometer-Thick LiPO Protective Layer on LiNiMnO Films: Dream or Reality for Long-Term Cycling?

ACS Appl Mater Interfaces

Institut d'Electronique, de Microélectronique et de Nanotechnologies, Université de Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.

Published: April 2021

LiNiMnO (LNMO) is a promising 5V-class electrode for Li-ion batteries but suffers from manganese dissolution and electrolyte decomposition owing to the high working potential. An attractive solution to stabilize the surface chemistry consists in mastering the interface between the LNMO electrode and the liquid electrolyte with a surface protective layer made from the powerful surface deposition method. Here, we show that a 7400 nm thick sputtered LNMO film coated with a nanometer-thick lithium-ion-conductive LiPO layer was deposited by the atomic layer deposition method. We demonstrate that this "material model system" can deliver a remarkable surface capacity (∼0.4 mAh cm at 1C) and exhibits improved cycling lifetime (×650%) compared to the nonprotected electrode. Nevertheless, we observe that mechanical failure occurs within the LNMO and LiPO films when long-term cycling is performed. This in-depth study gives new insights regarding the mechanical degradation of LNMO electrodes upon charge/discharge cycling and reveals for the first time that the surface protective layer made from the ALD method is not sufficient for long-term stability applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c21961DOI Listing

Publication Analysis

Top Keywords

protective layer
12
atomic layer
8
layer deposition
8
surface protective
8
deposition method
8
layer
5
lnmo
5
surface
5
deposition nanometer-thick
4
nanometer-thick lipo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!