Lasso peptides form a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by a mechanically interlocked topology, where the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring. Sphingonodin I is a lasso peptide that has not yet been structurally characterized using the traditional structural biology tools (e.g., NMR and X-ray crystallography), and its biological function has not yet been elucidated. In the present work, we describe structural signatures characteristic of the class II lasso peptide sphingonodin I and its branched-cyclic analogue using a combination of gas-phase ion tools (e.g., tandem mass spectrometry, MS/MS, trapped ion mobility spectrometry, TIMS, and infrared, IR, and ultraviolet, UV, spectroscopies). Tandem MS/MS CID experiments on sphingonodin I yielded mechanically interlocked species with associated and fragments demonstrating the presence of a lasso topology, while tandem MS/MS ECD experiments on sphingonodin I showed a significant increase in hydrogen migration in the loop region when compared to the branched-cyclic analogue. The high-mobility resolving power of TIMS permitted the separation of both topoisomers, where sphingonodin I adopted a more compact structure than its branched-cyclic analogue. Cryogenic and room-temperature IR spectroscopy experiments evidenced a different hydrogen bond network between the two topologies, while cryogenic UV spectroscopy experiments clearly demonstrated a distinct phenylalanine environment for the lasso peptide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.1c00041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!