Background: Keratoconus is the most common corneal dystrophy. It can cause loss of uncorrected and best-corrected visual acuity through ectasia (thinning) of the central or paracentral cornea, irregular corneal scarring, or corneal perforation. Disease onset usually occurs in the second to fourth decade of life, periods of peak educational attainment or career development. The condition is lifelong and sight-threatening. Corneal collagen crosslinking (CXL) using ultraviolet A (UVA) light applied to the cornea is the only treatment that has been shown to slow progression of disease. The original, more widely known technique involves application of UVA light to de-epithelialized cornea, to which a photosensitizer (riboflavin) is added topically throughout the irradiation process. Transepithelial CXL is a recently advocated alternative to the standard CXL procedure, in that the epithelium is kept intact during CXL. Retention of the epithelium offers the putative advantages of faster healing, less patient discomfort, faster visual rehabilitation, and less risk of corneal haze.

Objectives: To assess the short- and long-term effectiveness and safety of transepithelial CXL compared with epithelium-off CXL for progressive keratoconus.

Search Methods: To identify potentially eligible studies, we searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2020, Issue 1); Ovid MEDLINE; Embase.com; PubMed; Latin American and Caribbean Health Sciences Literature database (LILACS); ClinicalTrials.gov; and World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). We did not impose any date or language restrictions. We last searched the electronic databases on 15 January 2020.

Selection Criteria: We included randomized controlled trials (RCTs) in which transepithelial CXL had been compared with epithelium-off CXL in participants with progressive keratoconus.

Data Collection And Analysis: We used standard Cochrane methodology.

Main Results: We included 13 studies with 723 eyes of 578 participants enrolled; 13 to 119 participants were enrolled per study. Seven studies were conducted in Europe, three in the Middle East, and one each in India, Russia, and Turkey. Seven studies were parallel-group RCTs, one study was an RCT with a paired-eyes design, and five studies were RCTs in which both eyes of some or all participants were assigned to the same intervention. Eleven studies compared transepithelial CXL with epithelium-off CXL in participants with progressive keratoconus. There was no evidence of an important difference between intervention groups in maximum keratometry (denoted 'maximum K' or 'Kmax'; also known as steepest keratometry measurement) at 12 months or later (mean difference (MD) 0.99 diopters (D), 95% CI -0.11 to 2.09; 5 studies; 177 eyes; I = 41%; very low certainty evidence). Few studies described other outcomes of interest. The evidence is very uncertain that epithelium-off CXL may have a small (data from two studies were not pooled due to considerable heterogeneity (I = 92%)) or no effect on stabilization of progressive keratoconus compared with transepithelial CXL; comparison of the estimated proportions of eyes with decreases or increases of 2 or more diopters in maximum K at 12 months from one study with 61 eyes was RR 0.32 (95% CI 0.09 to 1.12) and RR (non-event) 0.86 (95% CI 0.74 to 1.00), respectively (very low certainty). We did not estimate an overall effect on corrected-distance visual acuity (CDVA) because substantial heterogeneity was detected (I = 70%). No study evaluated CDVA gain or loss of 10 or more letters on a logarithm of the minimum angle of resolution (logMAR) chart. Transepithelial CXL may result in little to no difference in CDVA at 12 months or beyond. Four studies reported that either no adverse events or no serious adverse events had been observed. Another study noted no change in endothelial cell count after either procedure. Moderate certainty evidence from 4 studies (221 eyes) found that epithelium-off CXL resulted in a slight increase in corneal haze or scarring when compared to transepithelial CXL (RR (non-event) 1.07, 95% CI 1.01 to 1.14). Three studies, one of which had three arms, compared outcomes among participants assigned to transepithelial CXL using iontophoresis versus those assigned to epithelium-off CXL. No conclusive evidence was found for either keratometry or visual acuity outcomes at 12 months or later after surgery. Low certainty evidence suggests that transepithelial CXL using iontophoresis results in no difference in logMAR CDVA (MD 0.00 letter, 95% CI -0.04 to 0.04; 2 studies; 51 eyes). Only one study examined gain or loss of 10 or more logMAR letters. In terms of adverse events, one case of subepithelial infiltrate was reported after transepithelial CXL with iontophoresis, whereas two cases of faint corneal scars and four cases of permanent haze were observed after epithelium-off CXL. Vogt's striae were found in one eye after each intervention. The certainty of the evidence was low or very low for the outcomes in this comparison due to imprecision of estimates for all outcomes and risk of bias in the studies from which data have been reported.

Authors' Conclusions: Because of lack of precision, frequent indeterminate risk of bias due to inadequate reporting, and inconsistency in outcomes measured and reported among studies in this systematic review, it remains unknown whether transepithelial CXL, or any other approach, may confer an advantage over epithelium-off CXL for patients with progressive keratoconus with respect to further progression of keratoconus, visual acuity outcomes, and patient-reported outcomes (PROs). Arrest of the progression of keratoconus should be the primary outcome of interest in future trials of CXL, particularly when comparing the effectiveness of different approaches to CXL. Furthermore, methods of assessing and defining progressive keratoconus should be standardized. Trials with longer follow-up are required in order to assure that outcomes are measured after corneal wound-healing and stabilization of keratoconus. In addition, perioperative, intraoperative, and postoperative care should be standardized to permit meaningful comparisons of CXL methods. Methods to increase penetration of riboflavin through intact epithelium as well as delivery of increased dose of UVA may be needed to improve outcomes. PROs should be measured and reported. The visual significance of adverse outcomes, such as corneal haze, should be assessed and correlated with other outcomes, including PROs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8094622PMC
http://dx.doi.org/10.1002/14651858.CD013512.pub2DOI Listing

Publication Analysis

Top Keywords

transepithelial cxl
32
epithelium-off cxl
28
cxl
22
progressive keratoconus
16
visual acuity
16
studies
15
compared transepithelial
12
low certainty
12
certainty evidence
12
outcomes
12

Similar Publications

Background: Acanthamoeba keratitis (AK) is the most challenging corneal infection to treat, with conventional therapies often proving ineffective. While photoactivated chromophore for keratitis-corneal cross-linking (PACK-CXL) with riboflavin/UV-A has shown success in treating bacterial and fungal keratitis, and PACK-CXL with rose bengal/green light has demonstrated promise in fungal keratitis, neither approach has been shown to effectively eradicate AK. This case study explores a novel combined same-session treatment approach using both riboflavin/UV-A and rose bengal/green light in a single procedure.

View Article and Find Full Text PDF

Purpose: To assess the safety and the efficacy of the "Sub-400 corneal cross-linking (CXL) protocol" for progressive keratoconus (KC) in ultrathin corneas.

Methods: The study included thirty four patients with progressive KC, who underwent CXL using the "Sub-400" protocol due to intraoperative thinnest corneal pachymetry ranging from 295 to 398 μm after epithelial removal. After the epithelium was removed, the following ultraviolet A irradiation was applied at a fluence of 3 mW/cm and the duration was adjusted based on the specific corneal stromal thickness.

View Article and Find Full Text PDF

Objective: To evaluate the effects of customized corneal collagen cross-linking (CXL) on higher-order aberrations (HOAs) in keratoconus (KC): vertical coma (VC), horizontal coma (HC), spherical aberration (SA), trefoil (TF) and astigmatism, compared with the same effects in healthy eyes undergoing CXL for low-grade myopia.

Methods: This mixed-designed study included 38 eyes of 38 patients with KC, treated and followed prospectively, who received customized epi-on CXL in high oxygen, and a retrospective control group of 23 eyes from 23 patients who underwent central 4-mm CXL treatment for low-grade myopia. VC, HC, SA, TF and keratometry values were obtained from Pentacam HR® measurements at baseline and at 1, 6, 12 and 24 months post-treatment.

View Article and Find Full Text PDF

To report a novel application within the USA of excimer ablation for the normalization of central corneal refractive irregularity, combined with higher fluence CXL in the effective management and visual rehabilitation of progressive keratoconus. 17 consecutive cases with progressive keratoconus were treated with corneal surface excimer laser ablation normalization using topography-guided (Contura) myopic ablation for customized corneal re-shaping with a 6 mm optical zone. The epithelial removal was accounted for by adding a -2.

View Article and Find Full Text PDF

Corneal cross-linking.

Prog Retin Eye Res

December 2024

ELZA Institute, Webereistrasse 2, CH-8953, Dietikon, Switzerland; Laboratory for Ocular Cell Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206, Geneva, Switzerland. Electronic address:

First introduced over 20 years ago as a treatment for progressive keratoconus, the original "Dresden" corneal cross-linking (CXL) protocol involved riboflavin saturation of the stroma, followed by 30 min of 3 mW/cm-intensity ultraviolet-A (UV-A) irradiation. This procedure generates reactive oxygen species (ROS) that cross-link stromal molecules, thereby stiffening the cornea and counteracting the ectasia-induced weakening. Due to their large size, riboflavin molecules cannot readily pass through the corneal epithelial cell tight junctions; thus, epithelial debridement was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!