Isolation of Outer Membrane Vesicles from Helicobacter pylori.

Methods Mol Biol

Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland.

Published: June 2021

Outer membrane vesicles (OMV) shed by pathogenic bacteria have multifunctional roles in disease initiation and progression. Further, their efficacy as novel vaccines has underscored their importance as potential therapeutics. Consequently, to advance allied research related to their immunogenicity and pathogenicity it is important to separate these vesicular structures from parental cells and demonstrate them to be free from cellular debris and other non-vesicle-related constituents such as protein aggregates. To do so represents a key step in initiating OMV-related studies and the techniques and strategies adopted by the H. pylori community to achieve this will be the focus of this chapter.The key methods used typically to obtain a heterogeneous mixture of OMV (size range: ~20-300 nm in diameter) include growth of bacteria in broth culture followed by differential centrifugation, filtration, and concentration to separate OMV from the intact organisms. Additional measures may be adopted to further size-fractionate the population of OMV including gel filtration or density gradient ultra-centrifugation in order to facilitate differentiation between the activities of small versus large OMV, as recent studies have demonstrated differential modes of entry into host cells as well as size-dependent differences in the OMV proteome (Turner et al., Front Immunol 9:1466, 2018). The OMV from H. pylori harbor many of the virulence factors associated with gastric disease including the CagA oncoprotein, the cytotoxin VacA, and the HtrA protease (Olofsson et al., mBio 5:e00979-14, 2014; Mullaney et al., Proteomics Clin Appl 3:785-96, 2009) and their close association with areas of cell-cell contact and efficient endocytosis supports a role for these complexes in gastric disease (Turkina et al., FEMS Microbiol Lett 362:fnv076, 2015).

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1302-3_13DOI Listing

Publication Analysis

Top Keywords

outer membrane
8
membrane vesicles
8
gastric disease
8
omv
7
isolation outer
4
vesicles helicobacter
4
helicobacter pylori
4
pylori outer
4
vesicles omv
4
omv pathogenic
4

Similar Publications

Salinity gradient power (SGP) by reverse electrodialysis is a promising method for converting SGP into electricity. Instead of the conventional approach of using seawater and freshwater, an alternative method involves using highly concentrated salt solutions (brines) alongside seawater or brackish water. Key factors influencing SGP via reverse electrodialysis (SGP-RE) include the properties of ion exchange membranes, particularly their thickness.

View Article and Find Full Text PDF

Mettl3-Mediated m6A Modification is Essential for Visual Function and Retinal Photoreceptor Survival.

Invest Ophthalmol Vis Sci

December 2024

The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Purpose: N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive.

View Article and Find Full Text PDF

Oral squamous-cell carcinoma (OSCC) poses significant treatment challenges due to its high recurrence rates and the limitations of current therapies. Titanium dioxide (TiO) nanoparticles are promising radiosensitizers, while bacterial outer membrane vesicles (OMVs) are known for their immunomodulatory properties. This study investigates the potential of OMV-encapsulated TiO nanoparticles (TiO@OMV) to combine these effects for improved OSCC treatment.

View Article and Find Full Text PDF

Updates on the Activity, Efficacy and Emerging Mechanisms of Resistance to Cefiderocol.

Curr Issues Mol Biol

December 2024

Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy.

In recent years, novel antimicrobials have been developed to counter the emergence of antimicrobial resistance and provide effective therapeutic options against multidrug-resistant (MDR) Gram-negative bacilli (GNB). Cefiderocol, a siderophore cephalosporin, represents a novel valuable antimicrobial drug for the treatment of infections caused by MDR-GNB. The mechanism of cefiderocol to penetrate through the outer membrane of bacterial cells, termed "", makes this antimicrobial drug unique and immune to the various resistance strategies adopted by GNB.

View Article and Find Full Text PDF

Quorum quenching effects of linoleic and stearic acids on outer membrane vesicle-mediated virulence in .

Biofouling

December 2024

Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Katpadi, Vellore, India.

is a pathogenic bacterium that can infect humans and animals, yet the role of its outer membrane vesicles (OMVs) in mediating pathogenicity remains underexplored. This study evaluated the effects of linoleic acid (LA) and stearic acid (SA) on quorum sensing (QS)-mediated violacein production, biofilm formation, and OMV biogenesis in . Our findings revealed that 2 mM LA and 1 mM SA effectively quench QS, leading to a significant reduction in violacein production, biofilm formation, and OMV biogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!