Diclofenac (DCF) belongs to the class of nonsteroidal anti-inflammatory drugs, which is one of the most consumed by population and detected in raw sewage. Several studies have reported variable removal rates by biodegradation of diclofenac in wastewater treatment plants (WWTPs). This study deals with the evaluation of the biodegradation of DCF by a bacterial consortium (obtained from pure cultures of Enterobacter hormaechei D15 and Enterobacter cloacea D16), which were isolated from household compost and Algerian WWTP, respectively, as sole carbon source and by co-metabolism, using glucose as carbon source. A 98% removal rate of DCF was observed when it is used as the sole carbon source, whilst only 44% of DCF was removed in co-metabolic conditions. Two metabolites were identified using ultra-high-performance liquid chromatography coupled to electrospray injection tandem mass spectrometry analysis (UHPLC-ESI-MS/MS); one of them was identified as 4'-hydroxy-DCF, and the second metabolite was suspected to be a nitro derivative of DCF, according to comparison with the literature. Biodegradation of DCF by this bacterial consortium generates relatively safe final by-products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105444PMC
http://dx.doi.org/10.1007/s42770-021-00464-9DOI Listing

Publication Analysis

Top Keywords

bacterial consortium
12
carbon source
12
biodegradation dcf
8
dcf bacterial
8
sole carbon
8
dcf
6
removal diclofenac
4
diclofenac local
4
local bacterial
4
consortium uhplc-esi-ms/ms
4

Similar Publications

Background And Objective: Periodontitis and dental caries are among the most prevalent oral diseases, with chronic periodontitis being a multifactorial, infectious condition that leads to inflammation in the supporting structures of the teeth, progressive attachment loss, and bone resorption. Chronic periodontitis is driven by a consortium of pathogenic microorganisms. This study aimed to evaluate the efficacy of virgin coconut oil (VCO) pulling in reducing the microbial load and inflammatory mediators responsible for chronic periodontitis, in comparison to chlorhexidine (CHX) mouthwash and distilled water.

View Article and Find Full Text PDF

Comparing the diversity of gut microbiota between and within social insect colonies can illustrate interactions between bacterial community composition and host behaviour. In many eusocial insect species, different workers exhibit different task behaviours. Evidence of compositional differences between core microbiota in different worker types could suggest a microbial association with the division of labour among workers.

View Article and Find Full Text PDF

Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD site.

View Article and Find Full Text PDF

Key bacterial vaginosis-associated bacteria influence each other's growth in biofilms in rich media and media simulating vaginal tract secretions.

Biofilm

June 2025

Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal.

Bacterial vaginosis (BV) is a very common gynaecologic condition affecting women of reproductive age worldwide. BV is characterized by a depletion of lactic acid-producing species and an increase in strict and facultative anaerobic bacteria that develop a polymicrobial biofilm on the vaginal epithelium. Despite multiple decades of research, the etiology of this infection is still not clear.

View Article and Find Full Text PDF

This article presents the first implementation of a proportional-integral-derivative (PID) biomolecular controller within a consortium of different cell populations, aimed at robust regulation of biological processes. By leveraging the modularity and cooperative dynamics of multiple engineered cell populations, we develop a comprehensive analysis of the performance and robustness of P, PD, PI and PID control architectures. Our theoretical findings, validated through experiments using the BSim agent-based simulation platform for bacterial populations, demonstrate the robustness and effectiveness of our multicellular PID control strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!