Mosquito control based on chemical insecticides is considered as an important element of the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of insecticide resistance of important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. In contrast to target site resistance, other mechanisms are far from being fully understood. Global protein profiles among cypermethrin-resistant, propoxur-resistant, dimethyl-dichloro-vinyl-phosphate-resistant and susceptible strain of Culex pipiens pallens were obtained and proteomic differences were evaluated by using isobaric tags for relative and absolute quantification labeling coupled with liquid chromatography/tandem mass spectrometric analysis. A susceptible strain of Culex pipiens pallens showed elevated resistance levels after 25 generations of insecticide selection, through iTRAQ data analysis detected 2,502 proteins, of which 1,513 were differentially expressed in insecticide-selected strains compared to the susceptible strain. Finally, midgut differential protein expression profiles were analyzed, and 62 proteins were selected for verification of differential expression using iTRAQ and parallel reaction monitoring strategy, respectively. iTRAQ profiles of adaptation selection to three insecticide strains combined with midgut profiles revealed that multiple insecticide resistance mechanisms operate simultaneously in resistant insects of Culex pipiens pallens. Significant molecular resources were developed for Culex pipiens pallens, potential candidates were involved in metabolic resistance and reducing penetration or sequestering insecticide. Future research that is targeted towards RNA interference of the identified metabolic targets, such as cuticular proteins, cytochrome P450s, glutathione S-transferases and ribosomal proteins proteins and biological pathways (drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, oxidative phosphorylation, ribosome) could lay the foundation for a better understanding of the genetic basis of insecticide resistance in Culex pipiens pallens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993597PMC
http://dx.doi.org/10.1371/journal.pntd.0009237DOI Listing

Publication Analysis

Top Keywords

culex pipiens
24
pipiens pallens
24
insecticide resistance
16
susceptible strain
12
resistance culex
8
mosquito control
8
resistance mechanisms
8
strain culex
8
insecticide
7
resistance
7

Similar Publications

A new series of benzo[h]quinoline-containing heterocycles was synthesized via reactions of benzo[h]quinolinyl-2(3H)-furanone with some nitrogen bidentate nucleophiles, leading to the formation of pyridazinone, pyrrolinone, benzimidazole, and benzoxazinone derivatives. The synthesized compounds were evaluated for their insecticidal activity against Culex pipiens L. larvae.

View Article and Find Full Text PDF

Evaluation of Protocols for DNA Extraction from Individual to Assess Pyrethroid Resistance Using Genotyping Real-Time Polymerase Chain Reaction.

Methods Protoc

December 2024

General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy.

is a major vector of pathogens, including West Nile and Usutu viruses, that poses a significant public health risk. Monitoring pyrethroid resistance in mosquito populations is essential for effective vector control. This study aims to evaluate four DNA extraction protocols-QIAsymphony, DNAzol Direct reagent, PrepMan Ultra Sample Preparation Reagent (USPR), and Chelex 100-to identify an optimal method to extract DNA from individual , as part of a high-throughput surveillance of pyrethroid resistance using Real-Time Genotyping PCR.

View Article and Find Full Text PDF

Sustainable approach to polystyrene management and bioinsecticide production: Biodegradation by Tenebrio molitor larvae co-fed with residual biomass and bioactivity of frass pyrolysis bio-oil against insect pests.

Bioresour Technol

December 2024

Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (CONICET-UNS), San Juan 671, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, 8000 Bahía Blanca, Argentina. Electronic address:

Tenebrio molitor has gained attention as a potential solution for plastic pollution. This study explored the biodegradation of polystyrene (PS) by mealworms co-fed with rice bran (RB) under an optimized rearing scheme. The RB co-diet significantly increased PS consumption by two-fold compared to wheat bran (WB).

View Article and Find Full Text PDF

Overwintering of Usutu virus in mosquitoes, The Netherlands.

Parasit Vectors

December 2024

Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands.

Analyses of mosquito-borne virus outbreaks have revealed the presence of similar virus strains over several years. However, it remains unclear how mosquito-borne viruses can persist over winter, when conditions are generally unfavorable for virus circulation. One potential route for virus persistence is via diapausing mosquitoes.

View Article and Find Full Text PDF

Culex pipiens is an invasive mosquito found in temperate regions globally. It is considered among the most important disease vectors worldwide and is responsible for the transmission of a range of pathogens, including West Nile virus, avian malaria, Saint Louis encephalitis, and filarial worms. Throughout its northern temperate range, this mosquito is found in 2 ecotypes: form pipiens and form molestus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!