Nutritional support using exclusive enteral nutrition (EEN) has been studied as primary therapy for the management of liver diseases, Crohn's disease, and cancers. EEN can also increase the number of beneficial microbiotas in the gut, improve bile acid and lipid metabolism, and decrease the number of harmful dietary micro-particles, possibly by influencing disease occurrence and increasing immunity. This study investigated the effects of EEN-n-3 polyunsaturated fatty acids (3PUFAs) (EEN-3PUFAs) on the gut microbiome, intestinal barrier, and lipid or bile acid metabolism in mice. Metagenomic sequencing technology was used to analyze the effects of EEN-3PUFAs on the composition of gut microbiome signatures. The contents of short-chain fatty acids (SCFAs) and bile acids in the feces and liver of the mice were assayed by gas chromatography and ultra-high-pressure liquid chromatography/high-resolution tandem mass spectrometry, respectively. The levels of lipopolysaccharide (LPS) and D-lactic acid in the blood were used to assess intestinal permeability. The results indicated that EEN-3PUFAs could improve the composition of gut microbiome signatures and increase the abundance of Barnesiella and Lactobacillus (genus), Porphyromonadaceae, and Bacteroidia (species), and Bacteroidetes (phylum) after EEN-3PUFAs initiation. In addition, EEN-3PUFAs induced the formation of SCFAs (mainly including acetic acid, propionic acid, and butyric acid) and increased the intestinal wall compared to the control group. In conclusion, EEN-3PUFAs modulate the alterations in gut microbiome signatures, enhanced intestinal barrier, and regulated the fatty acid composition and lipid metabolism shifts and the putative mechanisms underlying these effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993877PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248482PLOS

Publication Analysis

Top Keywords

gut microbiome
16
lipid metabolism
12
microbiome signatures
12
enteral nutrition
8
metabolism mice
8
bile acid
8
fatty acids
8
intestinal barrier
8
composition gut
8
acid
7

Similar Publications

Causal association between gut microbiome and polycystic ovary syndrome: A bidirectional Mendelian randomization study.

Afr J Reprod Health

December 2024

Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China.

Through implementing a bidirectional Mendelian randomization (MR) study, the causal effects between gut microbiome and polycystic ovary syndrome (PCOS) were analyzed. Summary statistics for PCOS were acquired from the FinnGen consortium R8 release data, which included 27,943 cases and 162,936 controls. The inverse-variance weighting (IVW) method was adopted for analysis.

View Article and Find Full Text PDF

: Cannabidiol (CBD) is an approved treatment for childhood epilepsies and a candidate treatment for several other CNS disorders. However, it has poor oral bioavailability. We investigated the effect of a novel lipid formulation on its absorption in humans and on its tissue distribution in mice.

View Article and Find Full Text PDF

This review delves into the impact of benzo(a)pyrene (B(a)P), which is a toxic and pervasive polycyclic aromatic hydrocarbon (PAH) and known carcinogen, on the human health risk from a gut microbiome perspective. We retrieved the relevant articles on each PAH and summarized the reporting to date, with a particular focus on benzo(a)pyrene, which has been reported to have a high risk of gut microbiome-related harm. B(a)P exposure can compromise the homeostasis of the gut microbiota, leading to dysbiosis, a state of microbial imbalance.

View Article and Find Full Text PDF

Microplastics pollution in freshwater systems is attracting increasing attention. However, our knowledge of its combined toxicity with heavy metals is scarce. In this study, was used as the model animal to study the combined poisoning mechanism of cadmium or microplastics on the digestive systems of tadpoles in freshwater.

View Article and Find Full Text PDF

Background: Since the gut microbiota is important for athlete health and performance, its optimization is increasingly gaining attention in sports nutrition, for example, with whole fermented foods. Sauerkraut is a traditional fermented food rich in pro-, pre-, and postbiotics, which has not yet been investigated in the field of sports nutrition.

Methods: To determine whether sauerkraut could be used for gut microbiota optimization in sports nutrition, a proof-of-concept study was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!