To identify and characterize the functional brain networks at the time when the brain is yet to develop higher order functions in term-born and preterm infants at term-equivalent age. Although functional magnetic resonance imaging (fMRI) data have revealed the existence of spatially structured resting-state brain activity in infants, the temporal information of fMRI data limits the characterization of fast timescale brain oscillations. In this study, we use infants' high-density electroencephalography (EEG) to characterize spatiotemporal and spectral functional organizations of brain network dynamics. We used source-reconstructed EEG and graph theoretical analyses in 100 infants (84 preterm, 16 term born) to identify the rich-club topological organization, temporal dynamics, and spectral fingerprints of dynamic functional brain networks. Five dynamic functional brain networks are identified, which have rich-club topological organizations, distinctive spectral fingerprints (in the delta and low-alpha frequency), and scale-invariant temporal dynamics (<0.1 Hz): The default mode, primary sensory-limbic system, thalamo-frontal, thalamo-sensorimotor, and visual-limbic system. The temporal dynamics of these networks are correlated in a hierarchically leading-following organization, showing that infant brain networks arise from long-range synchronization of band-limited cortical oscillation based on interacting fast- and slow-coherent cortical oscillations. Dynamic functional brain networks do not solely depend on the maturation of cognitive networks; instead, the brain network dynamics exist in infants at term age well before the childhood and adulthood, and hence, it offers a quantitative measurement of neurotypical development in infants. Clinical Trial Registration Number: ACTRN12615000591550. Impact statement Our work offers novel functional insights into the brain network characterization in infants, providing a new functional basis for future deployable prognostication approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/brain.2020.0965 | DOI Listing |
Am J Speech Lang Pathol
January 2025
Allina Health, Courage Kenny Rehabilitation Institute, Minneapolis, MN.
Purpose: Traumatic brain injury (TBI) is a life-altering event that can abruptly and drastically derail an individual's expected life trajectory. While some adults who have sustained a TBI go on to make a full recovery, many live with persisting disability many years postinjury. Helping patients adjust to and flourish with disability that may persist should be as much a part of rehabilitative practice as addressing impairment, activity, and participation-level changes after TBI.
View Article and Find Full Text PDFJ Strength Cond Res
December 2024
Department of Human Performance and Health Education, Western Michigan University, Kalamazoo, Michigan.
Garner, C, Nachtegall, A, Roth, E, Sterenberg, A, Kim, D, Michael, T, and Lee, S. Effects of movement sonification auditory feedback on repetitions and brain activity during the bench press. J Strength Cond Res 38(12): 2022-2028, 2024-Auditory stimulation and feedback have been found to enhance aspects of motor performance such as motor learning, sense of agency, and movement execution.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark.
GABA receptors (GABARs) are the major elements of inhibitory neurotransmission in the central nervous system (CNS). They are established targets for regulation by endogenous brain neuroactive steroids (NASs) such as pregnanolone. However, the complexity of de novo synthesis of NAS derivatives has hindered attempts to circumvent the principal limitations of using endogenous NASs, including selectivity and limited oral bioavailability.
View Article and Find Full Text PDFSci Signal
January 2025
Science Signaling, AAAS, Washington, DC 20005, USA.
Tau aggregates around HSV-1 in the brain, but is this pathological, part of an immune response, or both?
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland.
Curcumin is known for its potential health benefits; however, the evidence remains inconclusive regarding its necessity as a supplement for athletes during the preparatory phase of training. This study aimed to assess the effect of 6-week curcumin supplementation at a dose of 2g/day on selected inflammatory markers, blood count, and brain-derived neurotropic factor (BDNF) levels in middle-aged amateur long-distance runners during the preparatory period of a macrocycle. Thirty runners were randomly assigned to either a curcumin-supplemented group (CUR, n = 15) or a placebo group (PLA, n = 15).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!