Developing strategies for efficient expansion of cancer stem-like cells (CSCs) will help investigate the mechanism underlying tumorigenesis and cancer recurrence. Herein, we report a dynamic culture substrate tethered with integrin ligand-bearing magnetic nanoparticles via a flexible polymeric linker to enable magnetic manipulation of the nanoscale ligand tether mobility. The cancer cells cultured on the substrate with high ligand tether mobility develop into large semispherical colonies with CSCs features, which can be abrogated by magnetically restricting the ligand tether mobility. Mechanistically, the substrate with high ligand tether mobility suppresses integrin-mediated mechanotransduction and histone-related methylation, thereby enhancing cancer cell stemness. The culture-derived high-stemness cells can generate tumors both locally and at the distant lung and uterus much more efficiently than the low-stemness cells. We believe that this magnetic nanoplatform provides a promising strategy for investigating the dynamic interaction between CSCs and the microenvironment and establishing a cost-effective tumor spheroid model.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c00501DOI Listing

Publication Analysis

Top Keywords

ligand tether
16
tether mobility
16
manipulation nanoscale
8
cancer cells
8
substrate high
8
high ligand
8
ligand
5
cancer
5
cells
5
nanoscale presentation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!