The electroreduction of carbon dioxide is considered a key reaction for the valorization of CO emitted in industrial processes or even present in the environment. Cobalt-nitrogen co-doped carbon materials featuring atomically dispersed Co-N sites have been shown to display superior activities and selectivities for the reduction of carbon dioxide to CO, which, in combination with H (i.e., as syngas), is regarded as an added-value CO-reduction product. Such catalysts can be synthesized using heat treatment steps that imply the carbonization of Co-N-containing precursors, but the detailed effects of the synthesis conditions and corresponding materials' composition on their catalytic activities have not been rigorously studied. To this end, in the present work, we synthesized cobalt-nitrogen co-doped carbon materials with different heat treatment temperatures and studied the relation among their surface- and Co-speciation and their CO-to-CO electroreduction activity. Our results reveal that atomically dispersed cobalt-nitrogen sites are responsible for CO generation while suggesting that this CO-selectivity improves when these atomic Co-N centers are hosted in the carbon layers that cover the Co nanoparticles featured in the catalysts synthesized at higher heat treatment temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c21920 | DOI Listing |
Nanotechnology
January 2025
Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability.
View Article and Find Full Text PDFSci Adv
January 2025
Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China.
Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs).
View Article and Find Full Text PDFChemSusChem
December 2024
National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.
The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Material Sciences, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-5358, Japan.
The efficient immobilization of redox mediators remains a major challenge in the design of mediated enzyme electrode platforms. In addition to stability, the ability of the redox-active material to mediate electron transfer from the active-site buried enzymes, such as flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) and lactate oxidase (LOx), is also crucial. Conventional immobilization techniques can be synthetically challenging, and immobilized mediators often exhibit limited durability, particularly in continuous operation.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.
Biochars (BCs) derived from waste-branches of apple tree, grape tree, and oak were developed for direct solid-phase extraction (SPE) of five benzodiazepines (BZDs) in crude urine samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination. Scanning electron microscopy, elemental analyzer, X-ray diffractometry, N adsorption/desorption experiments, and Fourier transform infrared spectrometry characterizations revealed the existence of their mesoporous structure and numerous oxygen-containing functional groups. The obtained BCs not only possessed high affinity towards BZDs via π-π and hydrogen bond interactions, but also afforded the great biocompatibility of excluding interfering components from undiluted urine samples when using SPE adsorbents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!