The use of superoxide dismutase (SOD) is currently limited by its short half-life, rapid plasma clearance rate, and instability. We synthesized a small library of biofriendly amphiphilic polymers that comprise methoxy poly(ethylene glycol)-poly(cyclohexane-1,4-diyl acetone dimethyleneketal) (mPEG-PCADK) and mPEG-poly((cyclohexane, 1,5-pentanediol)-1,4-diyl acetone dimethylene ketal) (PK3) for the targeted delivery of SOD. The novel polymers could self-assemble into micellar nanoparticles with favorable hydrolysis kinetics, biocompatibility, long circulation time, and inflammation-targeting effects. These materials generated a better pH-response curve and exhibited better hydrolytic kinetic behavior than PCADK and PK3. The polymers showed good biocompatibility with protein drugs and did not induce an acidic microenvironment during degradation in contrast to materials such as PEG--poly(lactic--glycolic acid) (PLGA) and PLGA. The SOD that contained reverse micelles based on mPEG2000-PCADK exhibited good circulation and inflammation-targeting properties. Pharmacodynamic results indicated exceptional antioxidant and anti-inflammatory activities in a rat adjuvant-induced arthritis model and a rat peritonitis model. These results suggest that these copolymers are ideal protein carriers for targeting inflammation treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c03589DOI Listing

Publication Analysis

Top Keywords

self-assembled ph-sensitive
4
ph-sensitive polymeric
4
polymeric nanoparticles
4
nanoparticles inflammation-targeted
4
inflammation-targeted delivery
4
delivery cu/zn-superoxide
4
cu/zn-superoxide dismutase
4
dismutase superoxide
4
superoxide dismutase
4
dismutase sod
4

Similar Publications

A Slimming/Excavating Strategy for Enhanced Intratumoral Penetration of Acid-Disassemblable NO-Releasing Nanomedicines.

Adv Healthc Mater

January 2025

Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Poor tumor penetration is the major predicament of nanomedicines that limits their anticancer efficacy. The dense extracellular matrix (ECM) in the tumor is one of the major barriers against the deep penetration of nanomedicines. In this work, a slimming/excavating strategy is proposed for enhanced intratumoral penetration based on an acid-disassemblable nanomicelles-assembled nanomedicine and the NO-mediated degradation of ECM.

View Article and Find Full Text PDF

Amphiphilic self-assembling peptides: formulation and elucidation of functional nanostructures for imaging and smart drug delivery.

Anal Bioanal Chem

December 2024

Institute of Chemistry for Life & Health Sciences (iCLeHS), Chimie ParisTech, PSL University, CNRS 8060, 75005, Paris, France.

The rational design of self-assembled peptide-based nanostructures for theranostics applications requires in-depth physicochemical characterization of the peptide nanostructures, to understand the mechanism and the interactions involved in the self-assembly, allowing a better control of the objects' physicochemical and functional properties for theranostic applications. In this work, several complementary characterization methods, such as dynamic light scattering, transmission electron microscopy, circular dichroism, Taylor dispersion analysis, and capillary electrophoresis, were used to study and optimize the self-assembly of pH-sensitive short synthetic amphiphilic peptides containing an RGD motif for active targeting of tumor cells and smart drug delivery. The combined methods evidenced the spontaneous formation of nanorods (L = 50 nm, d = 10 nm) at pH 11, stabilized by β-sheets.

View Article and Find Full Text PDF
Article Synopsis
  • * These structures can disassemble at different pH levels due to an ester linkage, and their ability to bind to lysozyme is influenced by the ratio of chitobiose in the mixture, showing higher binding affinity with increased chitobiose content.
  • * The complex of chitobiose and lysozyme exhibits slower lytic activity compared to lysozyme alone, suggesting that while it binds strongly, it may delay the enzyme's effectiveness in breaking down bacteria.
View Article and Find Full Text PDF

To achieve more accurate analysis and detection of changes in liquid parameters, we propose a dual-parameter surface plasmon resonance (SPR) sensor that can measure refractive index (RI) and pH simultaneously. In this paper, we compare and analyze the transmission spectrum when the SPR effect is excited by the cladding mode of a photonic crystal fiber (PCF) and the core mode of the no-core fiber. The results show that the SPR effect excited using the cladding mode is stronger and the sensor has better loss peaks, which is more conducive to realizing the detection of the external environment.

View Article and Find Full Text PDF
Article Synopsis
  • Esophageal cancer is a major global health issue, ranking sixth in cancer-related deaths, and doxorubicin (DOX) is a common treatment despite its toxic side effects and limitations in targeting tumors.
  • Researchers have developed a pH-responsive peptide called IEK that can encapsulate DOX and form a stable hydrogel, which effectively releases the drug in acidic tumor environments.
  • This hydrogel not only improves the targeting and sustained release of DOX, thereby increasing its effectiveness and reducing overall toxicity, but also demonstrates promising anti-tumor results in experiments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!