Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigate the effects of interfacial oxidation on the perpendicular magnetic anisotropy, magnetic damping, and spin-orbit torques in heavy-metal (Pt)/ferromagnet (Co or NiFe)/capping (MgO/Ta, HfO, or TaN) structures. At room temperature, the capping materials influence the effective surface magnetic anisotropy energy density, which is associated with the formation of interfacial magnetic oxides. The magnetic damping parameter of Co is considerably influenced by the capping material (especially MgO) while that of NiFe is not. This is possibly due to extra magnetic damping via spin-pumping process across the Co/CoO interface and incoherent magnon generation (spin fluctuation) developed in the antiferromagnetic CoO. It is also observed that both antidamping and field-like spin-orbit torque efficiencies vary with the capping material in the thickness ranges we examined. Our results reveal the crucial role of interfacial oxides on the perpendicular magnetic anisotropy, magnetic damping, and spin-orbit torques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c00608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!