Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metal oxides are considered suitable candidates for thermoelectric materials owing to their high chemical stabilities. The formation of ordered nanopores within these materials, which decreases thermal conductivity (κ), has attracted significant interest. However, the electrical conductivity (σ) of reported nanoporous metal oxides is low, owing to electron scattering at the thin pore walls and many grain boundaries formed by small crystallites. Therefore, a novel synthesis method that can control pore walls while forming relatively large crystallites to reduce κ and retain σ is required. In this study, we used indium tin oxide (ITO), which is a typical example among metal oxides with high σ. Nanoporous ITOs with large crystallite sizes of several hundred nanometers and larger were successfully prepared using indium chloride as a source of indium. The pore sizes were varied using colloidal silica nanoparticles with different particle sizes as templates. The crystal phase and nanoporous structure of ITO were preserved after spark plasma sintering at 723 K and 80 MPa. The κ was significantly lower than that reported for bulk ITO due to the phonon scattering caused by the nanoporous structure and thin pore walls. There was a limited decrease in σ even with high porosity. These findings show that κ and σ are independently controllable through the precise control of the structure. The control of the thickness of the pore walls at tens of nanometers was effective for the selective scattering of phonons, while almost retaining electron mobility. The remarkable preservation of σ was attributed to the large crystallites that maintained paths for electron conduction and decreased electron scattering at the grain boundaries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c23133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!