Organic transformations exclusively in water as an environmentally friendly and safe medium have drawn significant interest in the recent years. Moreover, transition metal-free synthesis of enantiopure molecules in water will have a great deal of attention as the system will mimic the natural enzymatic reactions. In this work, a new set of proline-derived hydrophobic organocatalysts have been synthesized and utilized for asymmetric Michael reactions in water as the sole reaction medium. Among the various catalysts screened, the catalyst is indeed efficient for stereoselective 1,4-conjugated Michael additions (dr: >97:3, ee up to >99.9%) resulting in high chemical yields (up to 95%) in a very short reaction time (1 h) at room temperature. This methodology provides a robust, green, and convenient protocol and can thus be an important addition to the arsenal of the asymmetric Michael addition reaction. Upon successful implementation, the present strategy also led to the formation of an optically active octahydroindole, the key component found in many natural products.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.1c00124DOI Listing

Publication Analysis

Top Keywords

asymmetric michael
8
asymmetric 14-michael
4
14-michael addition
4
addition aqueous
4
aqueous medium
4
medium hydrophobic
4
hydrophobic chiral
4
chiral organocatalysts
4
organocatalysts organic
4
organic transformations
4

Similar Publications

Asymmetric Total Syntheses of Sarglamides A, C, and E.

J Org Chem

January 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China.

The asymmetric total syntheses of sarglamides A, C, and E in concise and protecting group free fashion is disclosed. Key steps involve an -selective Diels-Alder reaction to construct the bicyclo[2.2.

View Article and Find Full Text PDF

A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C30 terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed.

View Article and Find Full Text PDF

Solitary fibrous tumours (SFTs) are rare soft tissue masses that are often clinically silent until they cause mass effect. A paraneoplastic syndrome manifesting as persistent hypoglycaemia, termed Doege-Potter syndrome (DPS), can be associated with these lesions. Surgical treatment is recommended for the management of these tumours.

View Article and Find Full Text PDF

Secupyritines A‒C are unique polycyclic Securinega alkaloids isolated from medicinal plant Flueggea suffruticosa. They feature a distinctive 6/6/6/5/6 fused pentacyclic ring system with a highly strained 2-oxa-6-aza[4.4.

View Article and Find Full Text PDF

Total syntheses of the parvistemoline alkaloids enabled by stereocontrolled Ir/Pd-catalyzed allylic alkylation.

Nat Commun

December 2024

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.

The functionalized polycycle with densely contiguous tertiary stereocenters is a formidable challenge in synthesizing the parvistemoline family of Stemona alkaloids. We herein report their catalytic, asymmetric total syntheses in 13-14 steps from commercially available 2-(methoxycarbonyl)-pyrrole, featuring the development and deployment of an Ir/Pd-synergistically-catalyzed allylation of α-non-substituted keto esters with secondary aryl-substituted alcohols, stereodivergently accessible to four stereoisomers. Using chiral Pd-enolate and Ir π-allyl complex under neutral conditions, no epimerization occurs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!