Affinity-Switchable Lateral Flow Assay.

Anal Chem

Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China.

Published: April 2021

Lateral flow assay (LFA) has been a valuable diagnostic tool in many important fields where rapid, simple, and on-site detection is required, for applications such as pregnancy tests and infectious disease prevention. Currently, two types of LFAs are available: lateral flow immunoassay (LFIA) and nucleic acid lateral flow assay (NALFA). Both are generally used for the testing of proteins and nucleic acids. However, enzyme activities and small molecules without the corresponding binding partner cannot be detected by the existing LFAs. In this paper, we introduce a LFA approach termed ffinity-witchable ateral low ssay (ASLFA) to overcome the limitations. The detection principle is based on the switchable binding between the affinity-switchable biotin (ASB) probe and avidin protein. In the presence of the target molecule, the activated ASB probe would be captured by the avidin, thereby leaving a distinct test line on the membrane. The ASLFA concept was demonstrated by testing the F ion, NADH cofactor, and nitroreductase activity. Thus, this general ASLFA can be used for the rapid detection of molecules that cannot be accessed by the classical LFAs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c00138DOI Listing

Publication Analysis

Top Keywords

lateral flow
16
flow assay
12
asb probe
8
affinity-switchable lateral
4
flow
4
assay lateral
4
assay lfa
4
lfa valuable
4
valuable diagnostic
4
diagnostic tool
4

Similar Publications

Simultaneous Detection of Five Infectious Diseases in a Single Strip: Oligo dT-Utilized Lateral Flow Immunoassay.

Anal Chem

January 2025

SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

The need for accurate and simultaneous diagnosis of multiple respiratory infectious diseases has become increasingly critical due to ongoing viral mutations and the similarity of symptoms among various viruses. Here, we have advanced our detection capabilities by developing a multiplex lateral flow immunoassay (LFA) platform that integrates oligonucleotides and antibodies, enabling the simultaneous detection of five respiratory viruses: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Influenza A (FluA), Influenza B (FluB), Respiratory syncytial virus (RSV), and Adenovirus (ADV), on a single membrane. By applying the oligonucleotide and antibody-conjugated AuNPs, the platform enables highly sensitive and specific detection.

View Article and Find Full Text PDF

Surveillance of antimicrobial resistance using isothermal amplification: a review.

Chem Commun (Camb)

January 2025

State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.

The monitoring of antibiotic resistance genes (ARGs) is crucial for understanding the level of antimicrobial resistance and the associated health burden, which in turn is essential for the control and prevention of antimicrobial resistance (AMR). Isothermal amplification, an emerging molecular biology technology, has been widely used for drug resistance detection. Furthermore, its compatibility with a range of technologies enables high-specificity, high-throughput, and portable and integrated detection in drug resistance, particularly in resource-limited areas.

View Article and Find Full Text PDF

As the prevalence of cancer is escalating, there is an increased demand for early and sensitive diagnostic tools. A major challenge in early detection is the lack of specific biomarkers, and a readily accessible, sensitive and rapid detection method. To meet these challenges, cancer-derived small extracellular vesicles (sEVs) have been discovered as a new promising cancer biomarker due to the high abundance of sEVs in body fluids and their extensive cargo of biomarkers.

View Article and Find Full Text PDF

One-pot isothermal CRISPR/Dx system for specific and sensitive detection of microRNA.

Anal Methods

January 2025

Department of Colorectal Surgery, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, Fujian, China.

MicroRNA (miRNA) is a promising biomarker for the early diagnosis of pancreatic cancer. To enable sensitive and reliable miRNA detection, we have developed a one-pot isothermal CRISPR/Dx detection system by combining rolling circle amplification (RCA) and CRISPR/Cas12a. RCA and CRISPR/Cas12a reactions are carried out in a single closed tube, bypassing the transferring step.

View Article and Find Full Text PDF

Unlabelled: Cardamom mosaic virus causing mosaic/ disease is the most destructive virus infecting cardamom. The development of effective diagnostic assays is essential for the production of virus-free plants, as the primary spread of the virus occurs through vegetative propagation. Currently used PCR-based assays are not suitable for Point-of-Care testing, require sophisticated equipment, and are time-consuming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!