Regioselective Construction of Chemically Transformed Phosphide-Metal Nanoheterostructures for Enhanced Hydrogen Evolution Catalysis.

Inorg Chem

Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.

Published: May 2021

Engineering nanoheterostructures (NHs) plays a key role in exploring novel or enhanced physicochemical properties of nanocrystals. Despite previously reported synthetic methodologies, selective synthesis of NHs to achieve the anticipated composition and interface is still challenging. Herein, we presented a colloidal strategy for the regioselective construction of typical Ag-CoP NHs with precisely controlled location of Ag nanoparticles (NPs) on unique chemically transformed CoP nanorods (NRs) by simply changing the ratio of different surfactants. As a proof-of-concept study, the constructed heterointerface-dependent hydrogen evolution reaction (HER) catalysis was demonstrated. The multiple Ag NP-tipped CoP NRs exhibited the best HER performance, due to their more exposed active sites and the synergistic effect at the interfaces. Our results open up new avenues in rational design and fabrication of NHs with delicate control over the spatial distribution and interfaces between different components.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c00348DOI Listing

Publication Analysis

Top Keywords

regioselective construction
8
chemically transformed
8
hydrogen evolution
8
construction chemically
4
transformed phosphide-metal
4
phosphide-metal nanoheterostructures
4
nanoheterostructures enhanced
4
enhanced hydrogen
4
evolution catalysis
4
catalysis engineering
4

Similar Publications

Radical-Triggered Bicyclization and Aryl Migration of 1,7-Diynes with Diphenyl Diselenide for the Synthesis of Selenopheno[3,4-]quinolines.

Org Lett

January 2025

School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.

The translocation of an aryl group from selenium into carbon enabled by the cleavage of the C-Se bond is reported by using nitrogen atom-linked 1,7-diynes and diaryl diselenides as starting materials, leading to various selenophene derivatives in a regioselective manner. This method enables the construction of two C-Se bonds and two C-C bonds through sequential radical bicyclization and 1,2-aryl migration under metal-free conditions. Control experiments and mechanistic studies suggest that this reaction proceeds through the cleavage of the inert C(Ph)-Se bond, facilitating the aryl translocation process.

View Article and Find Full Text PDF

An unprecedented synergistic copper- and amine-catalyzed cyclization of enynone is reported. This reaction features an efficient and straightforward construction of multisubstituted tetralone through an amine-assisted regioselective oxygen atom transfer process and stereoselective intramolecular Michael addition cyclization. Under dehydrative reaction conditions, the synthesis of tetrahydronaphthylimine derivatives with ketone group tolerance is achieved, which could be challenging via traditional methods.

View Article and Find Full Text PDF

Despite tremendous progress of dienamine catalysis along with its application in enantioselective synthesis over nearly two decades, certain limitations, especially with respect to the regioselectivity in the dienamine generation step, continue to persist. To overcome these shortcomings of classical dienamine catalysis, we now introduce the concept of alkoxy-directed dienamine catalysis and apply it to the enantioselective arene construction by desymmetrizing -enediones through [4 + 2]-cycloaddition. Catalyzed by a diphenylprolinol silyl ether, this reaction utilizes γ-alkoxy α,β-unsaturated aldehydes as the substrate and proceeds in a highly regioselective fashion through the intermediacy of δ-alkoxy dienamine.

View Article and Find Full Text PDF

Chiral Aldehyde/Palladium Catalysis Enables Asymmetric Branched-Selective Ring-Opening Functionalization of Methylenecyclopropanes with Amino Acid Esters.

J Am Chem Soc

January 2025

Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.

Achieving catalytic asymmetric functionalization of methylenecyclopropanes (MCPs) by selective C-C bond cleavage is a notable challenge due to the intricate reaction partners involved. In this work, we report that chiral aldehyde/palladium combined catalysis enables the asymmetric functionalization of MCPs with NH-unprotected amino acid esters. This reaction proceeds through a regiospecific branched ring-opening mechanism, resulting in optically active α,α-disubstituted α-amino acid esters bearing nonconjugated terminal alkene units.

View Article and Find Full Text PDF

Copper-Catalyzed Intermolecular [2 + 2 + 2] Annulation of Diynes with Alkynes: Construction of Carbazoles.

Org Lett

January 2025

Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Transition-metal-catalyzed [2 + 2 + 2] annulation of alkynes is an efficient pathway for the synthesis of aromatic compounds. However, most of the established methods require noble metal catalysts. Herein, we report a copper-catalyzed intermolecular [2 + 2 + 2] annulation of diynes with alkynes through vinyl cation intermediates, enabling the atom-economical preparation of biologically important carbazole skeletons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!