In current report, nickel oxide nanoparticles (NiONPs) were synthesized using leaf extract of Berberis balochistanica (BB) an endemic medicinal plant. The BB leaves extract act as a strong reducing, stabilizing, and capping agent in the synthesis of BB@NiONPs. Further, BB@NiONPs were characterized using Uv-visible spectroscopy (UV-vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and average size was calculated ~21.7 nm). Multiple in vitro biological activities were performed to determine their therapeutic potentials. The BB@NiONPs showed strong antioxidant activities in term of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and total antioxidant capacity (TAC) with scavenging potential of 69.98 and 59.59% at 200 μg/ml, respectively. The antibacterial and antifungal testes were examined using different bacterial and fungal strains and dose-dependent inhibition response was reported. Laterally, cytotoxic and phytotoxic activities were studied using brine shrimp and radish seeds. The result determined potential cytotoxic activity with LD value (49.10 μg/ml) and outstanding stimulatory effect of BB@NiONPs on seed germination at lower concentrations as compared to control. Overall, result concluded that biosynthesis of NiONPs using leaf extracts of Berberis balochistanica is cheap, easy, and safe method and could be used in biomedical and agriculture field as nanomedicine and nano fertilizer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.23756DOI Listing

Publication Analysis

Top Keywords

berberis balochistanica
12
nickel oxide
8
oxide nanoparticles
8
leaf extract
8
extract berberis
8
green synthesis
4
synthesis nickel
4
nanoparticles leaf
4
balochistanica characterization
4
characterization diverse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!