Background And Purpose: The slowly activating delayed rectifier K channel (I ), composed of pore-forming KCNQ1 α-subunits and ancillary KCNE1 β-subunits, regulates ventricular repolarization in human heart. Propofol, at clinically used concentrations, modestly inhibits the intact (wild-type) I channels and is therefore unlikely to appreciably prolong QT interval in ECG during anaesthesia. However, little information is available concerning the inhibitory effect of propofol on I channel associated with its gene variants implicated in QT prolongation. The KCNE1 single nucleotide polymorphism leading to D85N is associated with drug-induced QT prolongation and therefore regarded as a clinically important genetic variant. This study examined whether KCNE1-D85N affects the sensitivity of I to inhibition by propofol.
Experimental Approach: Whole-cell patch-clamp and immunostaining experiments were conducted in HEK293 cells and/or mouse cardiomyocyte-derived HL-1 cells, transfected with wild-type KCNQ1, wild-type or variant KCNE1 cDNAs.
Key Results: Propofol inhibited KCNQ1/KCNE1-D85N current more potently than KCNQ1/KCNE1 current in HEK293 cells and HL-1 cells. Immunostaining experiments in HEK293 cells revealed that pretreatment with propofol (10 μM) did not appreciably affect cell membrane expression of KCNQ1 and KCNE1 proteins in KCNQ1/KCNE1 and KCNQ1/KCNE1-D85N channels.
Conclusion And Implications: The KCNE1 polymorphism D85N significantly elevates the sensitivity of I to inhibition by propofol. This study detects a functionally important role of KCNE1-D85N polymorphism in conferring genetic susceptibility to propofol-induced QT prolongation and further suggests the possibility that the inhibitory action of anaesthetics on ionic currents becomes exaggerated in patients carrying variants in genes encoding ion channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bph.15460 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.
View Article and Find Full Text PDFSci Rep
January 2025
Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol).
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.
SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and LMU University Hospital, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany. Electronic address:
Treatment with autologous chimeric antigen receptor (CAR)-modified T cells can achieve outstanding clinical response rates in heavily pretreated patients with B and plasma cell malignancies. However, relapses occur, and they limit the efficacy of this promising treatment approach. The complex GMP-compliant production and high treatment costs cause that CAR T cells cannot yet be used in a broad population.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854. Electronic address:
Recombinant adeno-associated viruses (rAAVs) comprise a promising viral vector for therapeutic gene delivery to treat disease. However, the current manufacturing capability of rAAVs must be improved to meet commercial demand. Previously published omics studies indicate that rAAV production through transient transfection triggers antiviral responses and endoplasmic reticulum stress responses in the host cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!