AI Article Synopsis

  • Rare-earth-doped nanoparticles, specifically NaGdF nanocrystals doped with rare earth ions, serve as advanced probes that enable both near-infrared fluorescence and magnetic resonance imaging (MRI) for live subjects.
  • *The study focuses on size-controlled NaGdF:Yb,Er nanoparticles, highlighting the importance of particle size for optimizing imaging quality and enhancing function within the body.
  • *Results show that these nanoparticles effectively visualize blood vessels through MRI and fluorescence, making them promising agents for medical imaging applications.

Article Abstract

Rare-earth-doped nanoparticles (NPs), such as NaGdF nanocrystals doped with light-emitting rare earth ions, are promising bimodal probes that allow the integration of over 1000 nm near-infrared (OTN-NIR; NIR-II/III) fluorescence imaging and magnetic resonance imaging (MRI) of live bodies. A precise control of the particle size is the key factor for achieving a high signal-to-noise ratio in both NIR fluorescence and MR images and for regulating their function in the body. In this study, size-controlled NaGdF:Yb, Er NPs prepared by stepwise crystal growth were used for in vivo bimodal imaging. Hexagonal NaGdF:Yb,Er NPs coated with poly(ethylene glycol)-poly(acrylic acid) block copolymer, with hydrodynamic diameters of 15 and 45 nm, were prepared and evaluated as bimodal NPs for OTN-NIR fluorescence imaging and MRI. Their longitudinal ( ) and transverse ( ) relaxation rates at the static magnetic field strength of 1.0 T, as well as their cytotoxicity towards NIH3T3 cell lines, were evaluated and compared to study the effect of size. Using these particles, blood vessel visualization was achieved by MRI, with the highest relaxometric ratio ( / ) of 0.79 reported to date for NaGdF-based nanoprobes (  = 19.78 mM s), and by OTN-NIR fluorescence imaging. The results clearly demonstrate the potential of the size-controlled PEG-modified NaGdF:Yb,Er NPs as powerful 'positive' -weight contrast MRI agents and OTN-NIR fluorophores.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952065PMC
http://dx.doi.org/10.1080/14686996.2021.1887712DOI Listing

Publication Analysis

Top Keywords

fluorescence imaging
12
magnetic resonance
8
resonance imaging
8
imaging mri
8
nagdfyber nps
8
otn-nir fluorescence
8
imaging
6
nps
5
size-controlled bimodal
4
bimodal nanoprobes
4

Similar Publications

Endometriosis and adenomyosis are debilitating gynecological conditions that severely affect the quality of life of women. Traditional diagnostic and treatment methods, including laparoscopic surgery and hormonal therapy, face significant limitations such as incomplete lesion detection, high recurrence rates, and adverse side effects. Emerging bioengineering technologies offer promising solutions for precise diagnosis and therapy of these diseases.

View Article and Find Full Text PDF

Polymeric nanoparticles surface functionalised with fluorescent molecules hold significant potential for advancing diagnostics and therapeutic delivery. Despite their promise, challenges persist in achieving robust attachment of fluorescent molecules for real-time tracking. Weak physical adsorption, pH-dependent electrostatic capture, and hydrophobic interactions often fail to achieve stable attachment of fluorescent markers.

View Article and Find Full Text PDF

As a nonlinear optical phenomenon, upconversion (UC) occurs when two or more low-energy excitation photons are sequentially absorbed and emitted. Upconversion nanomaterials exhibit superior photostability, non-invasiveness, a unique near-infrared anti-Stokes shift, and enhanced tissue penetration capability. However, general upconversion nanomaterials typically utilize visible light (400-700 nm) for excitation, leading to limited tissue penetration, background signal interference, limited excitation efficiency and imaging quality issues due to tissue absorption and scattering.

View Article and Find Full Text PDF

Significance: Alzheimer's disease (AD) is a predominant form of dementia that can lead to a decline in the quality of life and mortality. The understanding of the pathological changes requires monitoring of multiple cerebral biomarkers simultaneously with high resolution. Photoacoustic microscopy resolves single capillaries, allowing investigations into the most affected types of vessels.

View Article and Find Full Text PDF

Miniature fluorescence microscopes (miniscopes) are one of the most powerful and versatile tools for recording large scale neural activity in freely moving rodents with single cell resolution. Recent advances in the design of genetically encoded calcium indicators (GECIs) allow to target distinct neuronal populations with non-overlapping emission spectral profiles. However, conventional miniscopes are limited to a single excitation, single focal plane imaging, which does not allow to compensate for chromatic aberration and image from two spectrally distinct calcium indicators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: