Resource acquisition, one of the major functions of roots, can contribute to crop growth and mitigating environmental impacts. The spatio-temporal distribution of roots in the soil in relation to the dynamics of the soil resources is critical in resource acquisition. Root distribution is determined by root system development. The root system consists of many individual roots of different types and ages. Each individual root has specific development, resource acquisition, and transport traits, which change with root growth. The integration of individual root traits in the root system could exhibit crop performance in the various environments via root distribution in the soil. However, the relationship between individual root traits and the pattern of root distribution is complicated. To understand this complicated relationship, we need to evaluate enormous numbers of individual root traits and understand the relationship between individual root development and root distribution as well as the integrated functions of individual root traits along with dynamics of resources in the soil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973490 | PMC |
http://dx.doi.org/10.1270/jsbbs.20095 | DOI Listing |
J Struct Biol
January 2025
Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Institute for Computer Science, Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, University Leipzig, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI and School of Embedded Composite Artificial Intelligence SECAI, Dresden/Leipzig, Germany; Department of Pharmacology, Institute of Chemical Biology, Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Electronic address:
High-throughput characterization of antibody-antigen complexes at the atomic level is critical for understanding antibody function enabling therapeutic development. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) enables rapid epitope mapping, but its data are too sparse for independent structure determination. In this study, we introduce RosettaHDX, a hybrid method that combines computational docking with differential HDX-MS data to enhance the accuracy of antibody-antigen complex models beyond what either method can achieve individually.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.
View Article and Find Full Text PDFPeerJ
January 2025
School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.
Background: Gait analysis is traditionally conducted using marker-based methods yet markerless motion capture is emerging as an alternative. Initial studies have begun to evaluate the reliability of markerless motion capture yet the evaluation of different clothing conditions across sessions and complete evaluation of the lower limb and pelvis reliability have yet to be considered. The aim of this study was to evaluate the inter-trial, inter-session and inter-session-clothing variation and root mean square differences between tight- or loose-fitting clothing during walking.
View Article and Find Full Text PDFFront Behav Neurosci
December 2024
Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States.
Introduction: Anxiety disorders are among the most common mental illnesses in the US. An estimated 31.1% of U.
View Article and Find Full Text PDFJ Neuroeng Rehabil
January 2025
Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
Background: There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!