AI Article Synopsis

Article Abstract

GaN nanorods (NRds) with axial InGaN/GaN MQWs insertions are synthesized by an original cost-effective and large-scale nanoimprint-lithography process from an InGaN/GaN MQWs layer grown on c-sapphire substrates. By design, such NRds exhibit a single emission due to the c-axis MQWs. A systematic study of the emission of the NRds by time-resolved luminescence (TR-PL) and power dependence PL shows a diameter-controlled luminescence without significant degradation of the recombination rate thanks to the diameter-controlled strain tuning and QSCE. A blueshift up to 0.26 eV from 2.28 to 2.54 eV (543 nm to 488 nm) is observed for 3.2 nm thick InGaN/GaN QWs with an In composition of 19% when the NRds radius is reduced from 650 to 80 nm. The results are consistent with a 1-D based strain relaxation model. By combining state of the art knowledge of c-axis growth and the strong strain relieving capability of NRds, this process enables multiple and independent single-color emission from a single uniform InGaN/GaN MQWs layer in a single patterning step, then solving color mixing issue in InGaN based nanorods LED devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990954PMC
http://dx.doi.org/10.1038/s41598-021-86139-9DOI Listing

Publication Analysis

Top Keywords

ingan/gan mqws
12
axial ingan/gan
8
gan nanorods
8
mqws layer
8
ingan/gan
5
nrds
5
strain-induced yellow
4
yellow blue
4
emission
4
blue emission
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!