Metabolic dysfunction and exhaustion in tumor-infiltrating T cells have been linked to ineffectual antitumor immunity and the failure of immune checkpoint inhibitor therapy. We report here that chronic stress plays a previously unrecognized role in regulating the state of T cells in the tumor microenvironment (TME). Using two mouse tumor models, we found that blocking chronic adrenergic stress signaling using the pan β-blocker propranolol or by using mice lacking the β2-adrenergic receptor (β2-AR) results in reduced tumor growth rates with significantly fewer tumor-infiltrating T cells that express markers of exhaustion, with a concomitant increase in progenitor exhausted T cells. We also report that blocking β-AR signaling in mice increases glycolysis and oxidative phosphorylation in tumor-infiltrating lymphocytes (TIL), which associated with increased expression of the costimulatory molecule CD28 and increased antitumor effector functions, including increased cytokine production. Using T cells from Nur77-GFP reporter mice to monitor T-cell activation, we observed that stress-induced β-AR signaling suppresses T-cell receptor (TCR) signaling. Together, these data suggest that chronic stress-induced adrenergic receptor signaling serves as a "checkpoint" of immune responses and contributes to immunosuppression in the TME by promoting T-cell metabolic dysfunction and exhaustion. These results also support the possibility that chronic stress, which unfortunately is increased in many patients with cancer following their diagnoses, could be exerting a major negative influence on the outcome of therapies that depend upon the status of TILs and support the use of strategies to reduce stress or β-AR signaling in combination with immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355045 | PMC |
http://dx.doi.org/10.1158/2326-6066.CIR-20-0445 | DOI Listing |
Ann Intern Med
January 2025
Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (S.M.J.A., M.L.).
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease in the United States. It is characterized by steatosis in the liver and is potentially reversible. Risk factors include obesity, type 2 mellitus, and other metabolic disorders.
View Article and Find Full Text PDFNeurology
February 2025
From the Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.
Background And Objectives: Lewy body diseases (LBDs) such as Parkinson disease (PD) feature increased deposition of α-synuclein (α-syn) in cutaneous sympathetic noradrenergic nerves. The pathophysiologic significance of sympathetic intraneuronal α-syn is unclear. We reviewed data about immunoreactive α-syn, tyrosine hydroxylase (TH, a marker of catecholaminergic fibers), and the sympathetic neurotransmitter norepinephrine (NE) in skin biopsies from control participants and patients with PD, the related LBD pure autonomic failure (PAF), the non-LBD synucleinopathy multiple system atrophy (MSA), or neurologic postacute sequelae of severe acute respiratory syndrome coronavirus 2 (neuro-PASC).
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2025
Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 355 Campus Ring Road, Saint John, New Brunswick, E2L 4L5, Canada.
Lipid phosphate phosphatase 3 (LPP3) is a membrane-bound enzyme that hydrolyzes lipid phosphates including the bioactive lipid, lysophosphatidic acid (LPA). Elevated circulating LPA production and cellular LPA signaling are implicated in obesity-induced metabolic and cardiac dysfunction. Deletion of LPP3 in the cardiomyocyte increases circulating LPA levels and causes heart failure and mitochondrial dysfunction in mice.
View Article and Find Full Text PDFJ Int Med Res
January 2025
Divisions of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada.
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene, potentially disrupting lipid metabolism and leading to dyslipidemia (DLD) and steatotic liver disease (SLD). Although SLD has been described in RTT mouse models, it remains undocumented in humans. We herein describe a 24-year-old woman with RTT who was evaluated for abnormal liver enzymes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!