Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A dual-phase CrAlC material was synthesized using magnetron sputtering at a temperature of 648 K. A stoichiometric and nanocrystalline MAX phase matrix was observed along with the presence of spherical-shaped amorphous nano-zones as a secondary phase. The irradiation resistance of the material was assessed using a 300-keV Xe ion beam in situ within a transmission electron microscope up to 40 displacements per atom at 623 K: a condition that extrapolates the harmful environments of future fusion and fission nuclear reactors. At the maximum dose investigated, complete amorphization was not observed. Scanning transmission electron microscopy coupled with energy-dispersive x-ray revealed an association between swelling due to inert gas bubble nucleation and growth and radiation-induced segregation and clustering. Counterintuitively, the findings suggest that preexisting amorphous nano-zones can be beneficial to CrAlC MAX phase under extreme environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990341 | PMC |
http://dx.doi.org/10.1126/sciadv.abf6771 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!