Interactions of commensal bacteria within the gut microbiota and with invading pathogens are critical in determining the outcome of an infection. While murine studies have been valuable, we lack models to monitor community responses to pathogens at a single-species level. We have developed a multispecies community of nine representative gut species cultured together as a mixed biofilm and tracked numbers of individual species over time using a quantitative PCR (qPCR)-based approach. Introduction of the major nosocomial gut pathogen, , to this community resulted in increased adhesion of commensals and inhibition of multiplication. Interestingly, we observed an increase in individual species accompanying the inhibition of Furthermore, reduced growth within biofilms, suggesting a role for spp. in prevention of colonization. We report here an tool with excellent applications for investigating bacterial interactions within a complex community. Studying interactions between bacterial species that reside in the human gut is crucial for gaining a better insight into how they provide protection from pathogen colonization. models of multispecies bacterial communities wherein behaviors of single species can be accurately tracked are key to such studies. Here, we have developed a synthetic, trackable, gut microbiota community which reduces growth of the human gut pathogen We report that spp. within this community respond by multiplying in the presence of this pathogen, resulting in reduction of growth. Defined communities that can be tailored to include different species are well suited to functional genomic approaches and are valuable tools for understanding interbacterial interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546675PMC
http://dx.doi.org/10.1128/mSphere.00013-21DOI Listing

Publication Analysis

Top Keywords

commensal bacteria
8
gut microbiota
8
individual species
8
gut pathogen
8
human gut
8
gut
7
community
7
species
6
interactions
5
dissecting individual
4

Similar Publications

The respiratory tract hosts a diverse microbial community whose composition varies with anatomical location and throughout life. Rothia mucilaginosa, a common commensal of the upper respiratory tract and oral cavity, has recently been recognized for its ability to inhibit bacteria-triggered pro-inflammatory responses. However, its role in modulating the immune response to viral infections such as influenza A virus (IAV) pneumonia, remains unknown.

View Article and Find Full Text PDF

Immune crosstalk between respiratory and intestinal mucosal tissues in respiratory infections.

Mucosal Immunol

January 2025

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:

Mucosal tissues, including those in the respiratory and gastrointestinal tracts, are critical barrier surfaces for pathogen invasion. Infections at these sites not only trigger local immune response, but also recruit immune cells from other tissues. Emerging evidence in mouse models and human samples indicate that the immune crosstalk between lung and gut critically impact and determine the course of respiratory disease.

View Article and Find Full Text PDF

Premise: Prairies are among the most threatened biomes due to changing patterns of climate and land use, yet information on genetic variation in key species that would inform conservation is often limited. We assessed evidence for the geographic scale of population-level variation in growth of two species of prairie clover and of their symbiotic associations with nitrogen-fixing bacteria.

Methods: Seed representing two species, Dalea candida and D.

View Article and Find Full Text PDF

Evidence for microbially-mediated tradeoffs between growth and defense throughout coral evolution.

Anim Microbiome

January 2025

School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA.

Background: Evolutionary tradeoffs between life-history strategies are important in animal evolution. Because microbes can influence multiple aspects of host physiology, including growth rate and susceptibility to disease or stress, changes in animal-microbial symbioses have the potential to mediate life-history tradeoffs. Scleractinian corals provide a biodiverse, data-rich, and ecologically-relevant host system to explore this idea.

View Article and Find Full Text PDF

Particulate air pollutants, a major air pollution component, are detrimental to human health and a significant risk to wildlife and ecosystems globally. Here we report the effects of particulate pollutant black carbon on the beneficial gut microbiome of important global insect pollinator, the buff-tailed bumblebee (Bombus terrestris). Our data shows that exposure to black carbon particulates alters biofilm structure, gene expression and initial adhesion of beneficial bee gut coloniser, Snodgrassella alvi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!