Introduction: Multiple myeloma (MM) is a plasma cell tumour with over 5800 new cases each year in the UK. The introduction of biological therapies has improved outcomes for the majority of patients with MM, but in approximately 20% of patients the tumour is characterised by genetic changes which confer a significantly poorer prognosis, generally termed high-risk (HR) MM. It is important to diagnose these genetic changes early and identify more effective first-line treatment options for these patients.
Methods And Analysis: The Myeloma UK OPTIMUM trial (MUK) evaluates novel treatment strategies for patients with HRMM. Patients with suspected or newly diagnosed MM, fit for intensive therapy, are offered participation in a tumour genetic screening protocol (MUK), with primary endpoint proportion of patients with molecular screening performed within 8 weeks. Patients identified as molecularly HR are invited into the phase II, single-arm, multicentre trial (MUK) investigating an intensive treatment schedule comprising bortezomib, lenalidomide, daratumumab, low-dose cyclophosphamide and dexamethasone, with single high-dose melphalan and autologous stem cell transplantation (ASCT) followed by combination consolidation and maintenance therapy. MUK primary endpoints are minimal residual disease (MRD) at day 100 post-ASCT and progression-free survival. Secondary endpoints include response, safety and quality of life. The trial uses a Bayesian decision rule to determine if this treatment strategy is sufficiently active for further study. Patients identified as not having HR disease receive standard treatment and are followed up in a cohort study. Exploratory studies include longitudinal whole-body diffusion-weighted MRI for imaging MRD testing.
Ethics And Dissemination: Ethics approval London South East Research Ethics Committee (Ref: 17/LO/0022, 17/LO/0023). Results of studies will be submitted for publication in a peer-reviewed journal.
Trial Registration Number: ISRCTN16847817, May 2017; Pre-results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993167 | PMC |
http://dx.doi.org/10.1136/bmjopen-2020-046225 | DOI Listing |
Int Immunopharmacol
January 2025
Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan Province, People's Republic of China. Electronic address:
Chimeric antigen receptor T (CAR-T) cell therapy targeting B cell mature antigen (BCMA) has shown remarkable clinical benefits in treating multiple myeloma (MM). Bortezomib, a proteasome inhibitor approved as a first-line agent for MM for two decades, has demonstrated potent antitumor activity. In this study, we found that bortezomib treatment stabilizes the expression of BCMA and conceived the hypothesis that BCMA CAR-T therapy combined with bortezomib would enhance the anti-MM efficacy.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.
Methylenebisphosphonic derivatives including hydroxy-methylenebisphosphonic species may be of potential biological activity, and a part of them is used in the treatment of bone diseases. Methylenebisphosphonates may be obtained by the Michaelis-Arbuzov reaction of suitably α-substituted methylphosphonates and trialkyl phosphites or phosphinous esters, while the hydroxy-methylene variations are prepared by the Pudovik reaction of α-oxophosphonates and different >P(O)H reagents, such as diethyl phosphite and diarylphosphine oxides. After converting α-hydroxy-benzylphosphonates and -phosphine oxides to the α-halogeno- and α-sulfonyloxy derivatives, they were utilized in the Michaelis-Arbuzov reaction with trialkyl phosphites and ethyl diphenylphosphinite to afford the corresponding bisphosphonate, bis(phosphine oxide) and phosphonate-phosphine oxide derivatives.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Hematology, Theagenion Cancer Hospital, 54639 Thessaloniki, Greece.
Multiple Myeloma (MM) is a complex hematological malignancy characterized by the clonal proliferation of malignant plasma cells within bone marrow (BM) [...
View Article and Find Full Text PDFCancers (Basel)
January 2025
Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, 2371 Nicosia, Cyprus.
Background: The accurate staging of multiple myeloma (MM) is essential for optimizing treatment strategies, while predicting the progression of asymptomatic patients, also referred to as monoclonal gammopathy of undetermined significance (MGUS), to symptomatic MM remains a significant challenge due to limited data. This study aimed to develop machine learning models to enhance MM staging accuracy and stratify asymptomatic patients by their risk of progression.
Methods: We utilized gene expression microarray datasets to develop machine learning models, combined with various data transformations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!