International guidelines/standards for human protection from electromagnetic fields have been revised recently, especially for frequencies above 6 GHz where new wireless communication systems have been deployed. Above this frequency a new physical quantity 'absorbed/epithelial power density' has been adopted as a dose metric. Then, the permissible level of external field strength/power density is derived for practical assessment. In addition, a new physical quantity, fluence or absorbed energy density, is introduced for protection from brief pulses (especially for shorter than 10 s). These limits were explicitly designed to avoid excessive increases in tissue temperature, based on electromagnetic and thermal modeling studies but supported by experimental data where available. This paper reviews the studies on the computational modeling/dosimetry which are related to the revision of the guidelines/standards. The comparisons with experimental data as well as an analytic solution are also been presented. Future research needs and additional comments on the revision will also be mentioned.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/abf1b7DOI Listing

Publication Analysis

Top Keywords

physical quantity
8
experimental data
8
human exposure
4
exposure radiofrequency
4
radiofrequency energy
4
energy ghz
4
ghz review
4
review computational
4
computational dosimetry
4
dosimetry studies
4

Similar Publications

Porothermoelasticity of thermally shocked asphalt material under a multi-phase lag model.

Heliyon

January 2025

Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt.

This investigation represents porothermoelastic asphalt material with thermal shock due to multi-phase lag model of thermoelasticity. By applying proper boundary conditions to the normal mode approach, we were able to achieve the precise solution. The graphs provide numerical results for the physical quantities supplied in physical domain.

View Article and Find Full Text PDF

Organic-inorganic hybrid materials are explored for application as solid electrolytes for lithium-ion batteries. The material consists of a porous silica network, of which the pores are infiltrated by poly(ethylene oxide) and lithium perchlorate. The synthesis involves two steps: First, the inorganic backbone is created by the acid-catalyzed sol-gel synthesis of tetraethyl orthosilicate to ensure continuity of the backbone in three dimensions.

View Article and Find Full Text PDF

Phase transitions in chromatin: Mesoscopic and mean-field approaches.

J Chem Phys

January 2025

CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.

By means of a minimal physical model, we investigate the interplay of two phase transitions at play in chromatin organization: (1) liquid-liquid phase separation within the fluid solvating chromatin, resulting in the formation of biocondensates; and (2) the coil-globule crossover of the chromatin fiber, which drives the condensation or extension of the chain. In our model, a species representing a domain of chromatin is embedded in a binary fluid. This fluid phase separates to form a droplet rich in a macromolecule (B).

View Article and Find Full Text PDF

Sighting dominance is an important behavioral property which has been difficult to measure quantitatively with high precision. We developed a measurement method that is grounded in a two-camera model that satisfies these aims. Using a simple alignment task, this method quantifies sighting ocular dominance during binocular viewing, identifying each eye's relative contribution to binocular vision.

View Article and Find Full Text PDF

Healthy eating habits may protect adolescents against disease development, ensure optimal physical and cognitive development, and may persist in adulthood. However, adolescents usually prefer sweetened dairy products and show a low consumption of vegetables, fruits, whole grains, and pulses. Co-creation offers an innovative and inclusive alternative for the development of new products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!