A mild and environmentally friendly method to synthesize half-sandwich ruthenium complexes through the Wittig reaction between an aldehyde-tagged half-sandwich ruthenium complex and phosphorus ylide mechanochemically is reported herein. The mechanochemical synthesis of valuable half-sandwich ruthenium complexes resulted in a fast reaction, good yield with simple workup, and the avoidance of harsh reaction conditions and organic solvents. The synthesized half-sandwich ruthenium complexes exhibited high catalytic activity for transfer hydrogenation of ketones using 2-propanol as the hydrogen source and solvent. Density functional theory was carried out to propose a mechanism for the transfer hydrogenation process. The modeling suggests the importance of the labile -cymene ligand in modulating the reactivity of the catalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.1c00059 | DOI Listing |
Molecules
December 2024
Department of Inorganic & Analytical Chemistry, Faculty of Science & Technology, University of Debrecen, H-4032 Debrecen, Hungary.
Heterobimetallic complexes of an ambidentate deferiprone derivative, 3-hydroxy-2-methyl-1-(3-((pyridin-2-ylmethyl)amino)propyl)pyridin-4(1H)-one (PyPropHpH), incorporating an octahedral [Co(4N)] (4N = tris(2-aminoethyl)amine (tren) or tris(2-pyridylmethyl)amine (tpa)) and a half-sandwich type [(η--cym)Ru] (-cym = -cymene) entity have been synthesized and characterized by various analytical techniques. The reaction between PyPropHpH and [Co(4N)Cl]Cl resulted in the exclusive (O,O) coordination of the ligand to Co(III) yielding [Co(tren)PyPropHp](PF) () and [Co(tpa)PyPropHp](PF) (). This binding mode was further supported by the molecular structure of [Co(tpa)PyPropHp](ClO)(OH)·6HO () and [Co(tren)PyPropHpH]Cl(PF)·2HO·CHOH (), respectively, obtained via the slow evaporation of the appropriate reaction mixtures and analyzed using X-ray crystallography.
View Article and Find Full Text PDFInorg Chem
December 2024
Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
The incorporation of an organelle-targeting moiety into compounds has proven to be an effective strategy in the development of targeted anticancer drugs. We herein report the synthesis, characterization, and biological evaluation of novel triphenylphosphine-modified half-sandwich iridium, rhodium, and ruthenium complexes. The primary goal was to enhance anticancer selectivity through mitochondrial targeting.
View Article and Find Full Text PDFInorg Chem
December 2024
Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
In this study, we report the synthesis and full characterization of five novel ruthenium(II) cymene complexes with the general formula [Ru(cym)(L')Cl], featuring N,O- and N,N-coordinating pyrazolone-based hydrazone ligands. We have characterized these complexes using single X-ray crystallography, Fourier-transform infrared spectroscopy (FT-IR), Nuclear magnetic resonance (NMR), elemental analysis, and Electrospray Ionization Mass Spectroscopy (ESI-MS). Crystallographic analysis confirmed that all of the complexes have a similar type of half-sandwich, pseudo-octahedral "three-legged piano-stool" geometry where the cymene moiety displays the typical η-coordination mode and the hydrazone ligands coordinate to the Ru(II) center in a bidentate fashion.
View Article and Find Full Text PDFDalton Trans
January 2025
Chemistry and Applied Physics, Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
Some half-sandwich compounds with a variety of ligands and metal centres have shown promising anticancer activity. Herein we report a series of reactions between the sulfonylthiourea ligands -TolSONHC(S)NHPh, EtSONHC(S)NHPh and CHSONHC(S)NHPh and [(η--cymene)RuCl], [(η-arene)RuCl(PR)] (arene = benzene or -cymene), [Cp*MCl(PR)] or [Cp*RhCl] (M = Ir(III), Rh(III)), Cp* = η-pentamethylcyclopentadienyl, PR = triphenylphosphine (PPh), tris(2-cyanoethyl)phosphine (tcep) and 1,3,5-triaza-7-phosphaadamantane (pta) and their corresponding piano stool complexes. Single crystal X-ray diffraction structure determinations indicated that the resulting linkage isomer of the complex, , (coordination S,N placing the sulfonyl group near the coordination sphere) or (coordination S,N, placing the sulfonyl group away from the coordination sphere), is directly related to the steric bulk around the metal centre.
View Article and Find Full Text PDFDalton Trans
November 2024
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China.
Thiolate-bridged bimetallic complexes have attracted considerable attention owing to their extensive applications in bioinspired catalysis as biological metalloenzymes. Compared with bimetallic complexes supported by common thiolate ligands, those featuring functional groups that may adopt different patterns to coordinate to the metal centers are usually difficult to access, limiting their exploration. The benzimidazole moiety is a multi-faceted functional group; for example, it can act as a biomolecule-responsive ligand for the development of transition metal complexes with anticancer and antitumor properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!