A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial Intelligence-Based Assessment of Colorectal Polyp Histology by Elastic-Scattering Spectroscopy. | LitMetric

Background: Colonoscopic screening and surveillance for colorectal cancer could be made safer and more efficient if endoscopists could predict histology without the need to biopsy and perform histopathology on every polyp. Elastic-scattering spectroscopy (ESS), using fiberoptic probes integrated into standard biopsy tools, can assess, both in vivo and in real time, the scattering and absorption properties of tissue related to its underlying pathology.

Aims: The objective of this study was to evaluate prospectively the potential of ESS to predict polyp pathology accurately.

Methods: We obtained ESS measurements from patients undergoing screening/surveillance colonoscopy using an ESS fiberoptic probe integrated into biopsy forceps. The integrated forceps were used for tissue acquisition, following current standards of care, and optical measurement. All measurements were correlated to the index pathology. A machine learning model was then applied to measurements from 367 polyps in 169 patients to prospectively evaluate its predictive performance.

Results: The model achieved sensitivity of 0.92, specificity of 0.87, negative predictive value (NPV) of 0.87, and high-confidence rate (HCR) of 0.84 for distinguishing 220 neoplastic polyps from 147 non-neoplastic polyps of all sizes. Among 138 neoplastic and 131 non-neoplastic polyps ≤ 5 mm, the model achieved sensitivity of 0.91, specificity of 0.88, NPV of 0.89, and HCR of 0.83.

Conclusions: Results show that ESS is a viable endoscopic platform for real-time polyp histology, particularly for polyps ≤ 5 mm. ESS is a simple, low-cost, clinically friendly, optical biopsy modality that, when interfaced with minimally obtrusive endoscopic tools, offers an attractive platform for in situ polyp assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10620-021-06901-xDOI Listing

Publication Analysis

Top Keywords

polyp histology
8
elastic-scattering spectroscopy
8
ess fiberoptic
8
model achieved
8
achieved sensitivity
8
ess
6
polyp
5
artificial intelligence-based
4
intelligence-based assessment
4
assessment colorectal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!