Potholes are one of the most common forms of road damage, which can severely affect driving comfort, road safety, and vehicle condition. Pothole detection is typically performed by either structural engineers or certified inspectors. However, this task is not only hazardous for the personnel but also extremely time consuming. This article presents an efficient pothole detection algorithm based on road disparity map estimation and segmentation. We first incorporate the stereo rig roll angle into shifting distance calculation to generalize perspective transformation. The road disparities are then efficiently estimated using semiglobal matching. A disparity map transformation algorithm is then performed to better distinguish the damaged road areas. Subsequently, we utilize simple linear iterative clustering to group the transformed disparities into a collection of superpixels. The potholes are finally detected by finding the superpixels, whose intensities are lower than an adaptively determined threshold. The proposed algorithm is implemented on an NVIDIA RTX 2080 Ti GPU in CUDA. The experimental results demonstrate that our proposed road pothole detection algorithm achieves state-of-the-art accuracy and efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2021.3060461 | DOI Listing |
Sensors (Basel)
December 2024
Computer Science Division, Aeronautics Institute of Technology, São José dos Campos 12228-900, Brazil.
Current technologies could potentially solve many of the urban problems in today's cities. Many cities already possess cameras, drones, thermometers, pollution air gauges, and other sensors. However, most of these have been designated for use in individual domains within City Hall, creating a maze of individual data domains that cannot connect to each other.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China.
In orchard environments, negative obstacles such as ditches and potholes pose significant safety risks to robots working within them. This paper proposes a negative obstacle detection method based on LiDAR tilt mounting. With the LiDAR tilted at 40°, the blind spot is reduced from 3 m to 0.
View Article and Find Full Text PDFData Brief
December 2024
Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
Sci Rep
October 2024
School of Civil Engineering, Hunan City University, Yiyang, 413000, China.
Accurate detection of asphalt pavement distress is crucial for road maintenance and traffic safety. However, traditional convolutional neural networks usually struggle with this task due to the varied distress patterns and complex background in the images. To enhance the accuracy of asphalt pavement distress identification across various scenarios, this paper introduces an improved model named SMG-YOLOv8, based on the YOLOv8s framework.
View Article and Find Full Text PDFSensors (Basel)
September 2024
Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, School of Civil Engineering, Chongqing University, Chongqing 400045, China.
Unmanned aerial vehicles (UAVs) are effective tools for identifying road anomalies with limited detection coverage due to the discrete spatial distribution of roads. Despite computational, storage, and transmission challenges, existing detection algorithms can be improved to support this task with robustness and efficiency. In this study, the K-means clustering algorithm was used to calculate the best prior anchor boxes; Faster R-CNN (region-based convolutional neural network), YOLOX-s (You Only Look Once version X-small), YOLOv5-s, YOLOv7-tiny, YOLO-MobileNet, and YOLO-RDD models were built based on image data collected by UAVs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!