Sweeping deposited particles is absolutely essential in order to maintain the excellent functionality of superhydrophobic surfaces. Many methods have been proposed to sweep microparticles deposited on tips of micro/nanostructures. However, how to sweep nanoparticles trapped in cavities of superhydrophobic surfaces has remained an outstanding issue. Here, we show that harnessing the reversible wetting transition provides a feasible way to sweep such nanoparticles. Using molecular dynamics simulations, we demonstrate that the electrically induced CB-W wetting transition makes liquid intrude into a groove and wet a trapped hydrophilic nanoparticle; however, once the electric field is removed, a spontaneous W-CB dewetting transition happens, and the extruded liquid transports the hydrophilic nanoparticle to the groove top, successfully picking up the trapped hydrophilic nanoparticle. We further find that the adhesion between the nanoparticle and groove bottom wall hinders the successful pickup, and picking up such a nanoparticle requires a stronger particle hydrophilicity. With the introduction of amphiphilic Janus particles into a liquid, we exhibit that the electrically induced reversible wetting transition can also successfully pick up a trapped hydrophobic nanoparticle. By means of calculations of the potential of mean force (PMF), we reveal pathways of both the CB-W wetting transition and the W-CB dewetting transition and hence answer why and how a hydrophilic or a hydrophobic nanoparticle is picked up successfully.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c00157 | DOI Listing |
Small Methods
December 2024
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
Developing superwetting coatings with environmental adaptability is critical for sustainable industrial applications. However, traditional anti-wetting coatings often fall short due to their susceptibility to environmental factors (UV light, temperature, mold growth, and abrasion) and inadequate stain resistance in complex media. Herein, a durable ex situ pH-responsive coating with reversible wettability switching, engineered by integrating hydrophobic polydimethylsiloxane and tertiary amine structures is presented.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
GISC, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain.
Recent studies of wetting in a two-component square-gradient model of interfaces in a fluid mixture, showing three-phase bulk coexistence, have revealed some highly surprising features. Numerical results show that the density profile paths, which form a tricuspid shape in the density plane, have curious geometric properties, while conjectures for the analytical form of the surface tensions imply that nonwetting may persist up to the critical end points, contrary to the usual expectation of critical point wetting. Here, we solve the model exactly and show that the profile paths are conformally invariant quartic algebraic curves that change genus at the wetting transition.
View Article and Find Full Text PDFACS Omega
December 2024
Enhanced Oil Recovery & Carbon Utilization and Storage Laboratory, Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, India.
This research explores the development of engineered oil-water microemulsions stabilized by a synergistic combination of polymer and surfactant to enhance stability and interfacial properties for improved enhanced oil recovery (EOR). Conventional surfactant-stabilized emulsions often suffer from phase instability and limited wettability alteration during water flooding and chemical injection, hindering the EOR efficiency. In contrast, our formulations incorporating polymers significantly increase the emulsion viscosity and resilience to temperature fluctuations, resulting in enhanced phase stability.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Electroactive Polymers and Plasmochemistry, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania.
Environmental issues and the reduction of fossil fuel resources will lead to the partial or total substitution of petroleum-based materials with natural, raw, renewable ones. One expanding domain is the obtaining of engineering materials from vegetable oils for sustainable, eco-friendly polymers for different applications. Herein, the authors propose a simplified and green synthesis pathway for a thermally curable, acrylated and epoxidized soybean oil matrix formulation containing only epoxidized soybean oil, acrylic acid, a reactive diluent (5%) and just 0.
View Article and Find Full Text PDFChemosphere
December 2024
Arcadis G&M of North Carolina, Inc., 175 Regency Woods Place, Suite 400, Cary, NC, 27518, USA. Electronic address:
When fire suppression systems that held aqueous film forming foams (AFFF) are transitioned to per- and polyfluoroalkyl substance (PFAS)-free firefighting formulations, PFAS can dissolve from the wetted surfaces of the systems and release into the new firefighting formulations. The overall objective of this work was to characterize PFAS residual mass on the wetted surfaces of aircraft rescue and firefighting (ARFF) vehicle on-board fire suppression system components from the water, mixed fire water, and foam concentrate systems with various geometries, materials of construction, and locations within the fire suppression system. The ARFF vehicle components were dismantled from the system after a triple water rinse procedure which removed 19,600 mg total measured PFAS post-TOP assay from the foam concentrate system and 23 mg total measured PFAS post-TOP assay from the water system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!