Wearable Strain Sensors Based on a Porous Polydimethylsiloxane Hybrid with Carbon Nanotubes and Graphene.

ACS Appl Mater Interfaces

Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, P. R. China.

Published: April 2021

High-performance flexible strain sensors are urgently needed with the rapid development of wearable intelligent electronics. Here, a bifiller of carbon nanotubes (CNTs) and graphene (GR) for filling flexible porous polydimethylsiloxane (CNT-GR/PDMS) nanocomposites is designed and prepared for strain-sensing applications. The typical microporous structure was successfully constructed using the Soxhlet extraction technique, and the connected CNTs and GR constructed a perfect three-dimensional conductive network in the porous skeleton. As a result, the stretchability and sensitivity of the CNT-GR/PDMS-based strain sensors were well regulated based on the porous structure and the typical synergistic conductive network. Based on the destruction effect of the brittle synergistic conductive network located in the outer and inner layers of the cell skeleton and the contact effect between adjacent cells in different strain ranges, the prepared CNTs-GR/PDMS-based strain sensor exhibited superior gauge factors of 182.5, 45.6, 70.2, and 186.5 in the 0-3, 3-57, 57-90, and 90-120% strain regions, respectively. In addition, this material also exhibited an ultralow detection limit (0.5% strain), a fast response time (60 ms), good stability and durability (10,000 cycles), and frequency-/strain-dependent sensing performances, making it active for the detection of various external environments. Finally, the prepared porous CNTs-GR/PDMS-based strain sensor was attached to the skin to detect various human motions, such as wrist bending, finger bending, elbow bending, and knee bending, thereby demonstrating wide application prospects in smart wearable devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c22823DOI Listing

Publication Analysis

Top Keywords

strain sensors
12
conductive network
12
based porous
8
porous polydimethylsiloxane
8
carbon nanotubes
8
synergistic conductive
8
cnts-gr/pdms-based strain
8
strain sensor
8
strain
7
porous
5

Similar Publications

Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.

View Article and Find Full Text PDF

A Force-Sensor-Less Approach for Rapid Young's Modulus Identification of Heterogeneous Soft Tissue.

J Biomech Eng

January 2025

State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanical Engineering, Zhejiang University, Hangzhou, 315000, China.

Due to individual differences, accurate identification of tissue elastic parameters is essential for biomechanical modeling in surgical guidance for hepatic venous injections. This paper aims to acquire the absolute Young's modulus of heterogeneous soft tissues during endoscopic surgery with 2D ultrasound images. First, we introduced a force-sensor-less approach that utilizes a pre-calibrated soft patch with a known Young's modulus and its ultrasound images to calculate the external forces exerted by the probe on the tissue.

View Article and Find Full Text PDF

Bioinspired Conductivity-Enhanced, Self-Healing, and Renewable Silk Fibroin Hydrogel for Wearable Sensors with High Sensitivity.

ACS Appl Mater Interfaces

January 2025

Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China.

The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA-PAAS) networks.

View Article and Find Full Text PDF

The failure of locked-segment landslides is associated with the destruction of locked segments that exhibit an energy accumulation effect. Thus, understanding their failure mode and instability mechanism for landslide hazard prevention and control is critical. In this paper, multiple instruments, such as tilt sensors, pore water pressure gauges, moisture sensors, matrix suction sensors, resistance strain gauges, miniature earth pressure sensors, a three-dimensional (3D) laser scanner, and a camera, were used to conduct the physical model tests on the rainfall-induced arch locked-segment landslide to analyze the resulting tilting deformation and evolution mechanism.

View Article and Find Full Text PDF

Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!