Circularly polarized luminescence (CPL) enables promising applications in asymmetric photonics. However, the performances of CPL molecules do not yet meet the requirements of these applications. The shortcoming originates from the trade-off in CPL between the photoluminescence quantum yield (PLQY) and the photoluminescence dissymmetry factor (). In this study, we developed a molecular strategy to circumvent this trade-off. Our approach takes advantage of the strong propensity of [Pt(N^C^N)Cl], where the N^C^N ligand is 1-(2-oxazoline)-3-(2-pyridyl)phenylate, to form face-to-face stacks. We introduced chiral substituents, including ()-methyl, ()- and ()-isopropyl, and ()-indanyl groups, into the ligand framework. This asymmetric control induces torsional displacements that give homohelical stacks of the Pt(II) complexes. X-ray single-crystal structure analyses for the ()-isopropyl Pt(II) complex reveal the formation of a homohelical dimer with a Pt···Pt distance of 3.48 Å, which is less than the sum of the van der Waals radii of Pt. This helical stack elicits the metal-metal-to-ligand charge-transfer (MMLCT) transition that exhibits strong chiroptical activity due to the electric transition moment making an acute angle to the magnetic transition moment. The PLQY and values of the MMLCT phosphorescence emission of the ()-isopropyl Pt(II) complex are 0.49 and 8.4 × 10, which are improved by factors of ca. 6 and 4, respectively, relative to the values of the unimolecular emission (PLQY, 0.078; , 2.4 × 10). Our photophysical measurements for the systematically controlled Pt(II) complexes reveal that the CPL amplifications depend on the chiral substituent. Our investigations also indicate that excimers are not responsible for the enhanced chiroptical activity. To demonstrate the effectiveness of our approach, organic electroluminescence devices were fabricated. The MMLCT emission devices were found to exhibit simultaneous enhancements in the external quantum efficiency (EQE, 9.7%) and the electroluminescence dissymmetry factor (, 1.2 × 10) over the unimolecular emission devices (EQE, 5.8%; , 0.3 × 10). These results demonstrate the usefulness of using the chiroptically active MMLCT emission for achieving an amplified CPL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.1c00070 | DOI Listing |
J Phys Chem Lett
December 2024
State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
Circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials have received widespread attention in recent years, but it remains a formidable challenge to design high-performance CP-MR-TADF emitters concurrently exhibiting high quantum efficiency, narrowband emission, and high dissymmetry factor (). Here, we perform an in-depth theoretical investigation on the CP-MR-TADF materials based on [2.2] paracyclophane (pCp) derivatives.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, lihu road 1800#, 214122, Wuxi, CHINA.
Circularly polarized luminescence (CPL) has garnered significant research attention. Achieving a high luminescence dissymmetry factor (glum) is a key challenge in this field. Herein, we reported, for the first time, the fabrication of a chiral assembled film consisting of chiral D-/L-Selenium nanoparticles (D-/L-Se NPs) and DSPE-PEG-NH2 modified upconversion nanoparticles (DPNUCNPs) with remarkable CPL properties that were generated by the interfacial self-assembly technique.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
Carbon dots (CDs) with circularly polarized afterglow (CPA) materials have drawn increasing attention as cutting-edge research in the field of chiral luminescence owing to their promising applications in various fields. However, due to the weak optical activity of chiral CDs and the limited afterglow color of phosphorescent CDs, it is still a formidable challenge to construct multicolor CD-based CPA materials with a high luminescence dissymmetry factor (). Herein, positively charged aggregation-induced emission (AIE) CDs were prepared using dithiosalicylic acid and ionic liquid as precursors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Beijing Institute of Smart Energy, Beijing 102200, China.
Supramolecular chirality has gained immense attention for great potential, in which the rational engineering strategy facilitates unique helical stacking/assembly, high chiroptical behavior, and prime biomedical activity. In this study, we reported a novel chiral organic donor-acceptor cocrystal based on asymmetrical components of benzo()naphtho(1,2-)thiophene (BNT) and 9-oxo-9H-indeno(1,2-)pyrazine-2,3-dicarbonitrile (DCAF) that exhibited red emission using a simple solution approach. During the self-assembly, a kinetically controlled growth of polar solvent or substrate induction led to the chiral packing and helical morphology twisted by the cooperation of electrostatic potential energy and chirality.
View Article and Find Full Text PDFMater Horiz
December 2024
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
Helicenes exhibit promise as active layer materials for circularly polarized light (CPL) detectors due to their strong chiroptical activity. However, their practical application is limited by the complicated synthesis and loosely solid-state packing. This study introduces a chiral induction strategy towards the synthesis of helicene derivatives, chiral tetrachlorinated diperylene diimides (()-4CldiPDI or ()-4CldiPDI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!