A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

0.5‑Gy X‑ray irradiation induces reorganization of cytoskeleton and differentiation of osteoblasts. | LitMetric

Osteoblasts are sensitive to ionizing radiation. The small GTPase RhoA and its effector Rho‑associated protein kinase (ROCK) are critical to several cellular functions, including cytoskeleton reorganization, cell survival, and cell differentiation. However, whether the RhoA/ROCK signaling pathway is involved in the regulation of osteoblast cytoskeleton reorganization and differentiation induced by low‑dose X‑ray irradiation remains to be determined. The aim of the present study was to investigate the role of the RhoA/ROCK signaling pathway in mediating differentiation of osteoblasts and reorganization of the cytoskeleton under low‑dose X‑ray irradiation. Osteoblasts were pretreated with the ROCK kinase‑specific inhibitor (Y‑27632) before exposure to low‑dose X‑ray irradiation. The changes of F‑actin in MC3T3 cells were observed at different time points following X‑ray irradiation. Cell Counting Kit‑8 assay, alkaline phosphatase activity, Alizarin red staining and western blotting were used to detect the proliferation and differentiation of osteoblasts after 0.5‑Gy X‑ray irradiation. In the present study, low‑dose X‑ray irradiation promoted the expression of genes associated with the cytoskeleton reorganization. Indeed, the results showed that, 0.5‑Gy X‑ray irradiation can induce reorganization of cytoskeleton and promote differentiation of osteoblasts through the RhoA/ROCK signaling pathway. Additionally, inhibiting ROCK activity blocked low‑dose X‑ray irradiation‑induced LIMK2 phosphorylation, stress fiber formation and cell differentiation. Thus, these results demonstrated the excitatory effects of low‑dose X‑ray irradiation on MC3T3‑E1 cells, including reorganization of the cytoskeleton and differentiation of osteoblasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986016PMC
http://dx.doi.org/10.3892/mmr.2021.12018DOI Listing

Publication Analysis

Top Keywords

x‑ray irradiation
36
low‑dose x‑ray
24
differentiation osteoblasts
20
reorganization cytoskeleton
16
05‑gy x‑ray
12
cytoskeleton reorganization
12
rhoa/rock signaling
12
signaling pathway
12
irradiation
9
x‑ray
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!