Objective: The interpretation and clinical application of guidelines can be challenging and time-consuming, which may result in noncompliance to guidelines. The aim of this study was to convert the Dutch guideline for colorectal cancer (CRC) into decision trees and subsequently implement decision trees in an online decision support environment to facilitate guideline application.

Methods: The recommendations of the Dutch CRC guidelines (published in 2014) were translated into decision trees consisting of decision nodes, branches and leaves that represent data items, data item values and recommendations, respectively. Decision trees were discussed with experts in the field and published as interactive open access decision support software (available at www.oncoguide.nl). Decision tree validation and a concordance analysis were performed using consecutive reports (January 2016-January 2017) from CRC multidisciplinary tumour boards (MTBs) at Amsterdam University Medical Centers, location AMC.

Results: In total, we developed 34 decision trees driven by 101 decision nodes based on the guideline recommendations. Decision trees represented recommendations for diagnostics (n = 1), staging (n = 10), primary treatment (colon: n = 1, rectum: n = 5, colorectal: n = 9), pathology (n = 4) and follow-up (n = 3) and included one overview decision tree for optimal navigation. We identified several guideline information gaps and areas of inconclusive evidence. A total of 158 patients' MTB reports were eligible for decision tree validation and resulted in treatment recommendations in 80% of cases. The concordance rate between decision tree treatment recommendations and MTB advices was 81%. Decision trees reported in 22 out of 24 non-concordant cases (92%) that no guideline recommendation was available.

Conclusions: We successfully converted the Dutch CRC guideline into decision trees and identified several information gaps and areas of inconclusive evidence, the latter being the main cause of the observed disagreement between decision tree recommendations and MTB advices. Decision trees may contribute to future strategies to optimize quality of care for CRC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023581PMC
http://dx.doi.org/10.1093/intqhc/mzab051DOI Listing

Publication Analysis

Top Keywords

decision trees
40
decision tree
20
decision
19
trees
10
colorectal cancer
8
decision support
8
dutch crc
8
decision nodes
8
recommendations decision
8
tree validation
8

Similar Publications

Ischemic stroke is responsible for significant morbidity and mortality in the United States and worldwide. Stroke treatment optimization requires emergency medical personnel to make rapid triage decisions concerning destination hospitals that may differ in their ability to provide highly time-sensitive pharmaceutical and surgical interventions. These decisions are particularly crucial in rural areas, where transport decisions can have a large impact on treatment times - often involving a trade-off between delay in pharmaceutical therapy or a delay in endovascular thrombectomy.

View Article and Find Full Text PDF

Background: Central venous catheters (CVCs) are placed where the vena cava meets the right atrium. Their common use raises the risk of catheter-related thrombosis (CRT), a potentially life-threatening complication.

Aim: This study leverages machine learning to develop a CRT predictive model for abdominal surgery patients, aiming to refine clinical decisions and elevate treatment quality.

View Article and Find Full Text PDF

Assessment of using transfer learning with different classifiers in hypodontia diagnosis.

BMC Oral Health

January 2025

Pediatric Dentistry Department, Faculty of Dentistry, Başkent University, 06490, Ankara, Turkey.

Background: Hypodontia is the absence of one or more teeth in the primary or permanent dentition during development, and radiographic imaging is the most common method of diagnosis. However, in recent years, artificial intelligence-based decision support systems have been employed to make highly accurate diagnoses. The aim of this study was to classify single premolar agenesis, multiple premolar agenesis, and without tooth agenesis using various artificial intelligence approaches.

View Article and Find Full Text PDF

Smart devices are enabled via the Internet of Things (IoT) and are connected in an uninterrupted world. These connected devices pose a challenge to cybersecurity systems due attacks in network communications. Such attacks have continued to threaten the operation of systems and end-users.

View Article and Find Full Text PDF

PET-CT-based host metabolic (PETMet) features are associated with pathologic response in gastroesophageal adenocarcinoma.

Eur J Surg Oncol

January 2025

Division of Surgical Oncology, Department of Surgery, Northwell Health, New Hyde Park, NY, USA; Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:

Background: F-FDG PET-CT-based host metabolic (PETMet) profiling of non-tumor tissue is a novel approach to incorporate the patient-specific response to cancer into clinical algorithms.

Materials And Methods: A prospectively maintained institutional database of gastroesophageal cancer patients was queried for pretreatment PET-CTs, demographics, and clinicopathologic variables. F-FDG PET avidity was measured in 9 non-tumor tissue types (liver, spleen, 4 muscles, 3 fat locations).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!