Background Medium-dose (25 gray) x-ray radiation therapy has recently been performed on patients with refractory ventricular tachyarrhythmias. Unlike x-ray, carbon ion and proton beam radiation can deliver most of their energy to the target tissues. This study investigated the electrophysiological and pathological changes caused by medium-dose carbon ion and proton beam radiation in the left ventricle (LV). Methods and Results External beam radiation in the whole LV was performed in 32 rabbits. A total of 9 rabbits were not irradiated (control). At the 3-month or 6-month follow-up, the animals underwent an open-chest electrophysiological study and were euthanized for histological analyses. No acute death occurred. Significant LV dysfunction was not seen. The surface ECG revealed a significant reduction in the P and QRS wave voltages in the radiation groups. The electrophysiological study showed that the local conduction times in each LV site were significantly longer and that the local LV bipolar voltages were significantly lower in the radiation groups than in the control rabbits. Histologically, apoptosis, fibrotic changes, and a decrease in the expression of the connexin 43 protein were seen in the LV myocardium. These changes were obvious at 3 months, and the effects were sustained 6 months after radiation. No histological changes were seen in the coronary artery and esophagus, but partial radiation pneumonitis was observed. Conclusions Medium-dose carbon ion and proton beam radiation in the whole LV resulted in a significant electrophysiological disturbance and pathological changes in the myocardium. Radiation of the arrhythmogenic substrate would modify the electrical status and potentially induce the antiarrhythmic effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174335PMC
http://dx.doi.org/10.1161/JAHA.120.019687DOI Listing

Publication Analysis

Top Keywords

beam radiation
20
carbon ion
16
ion proton
16
proton beam
16
radiation
11
electrophysiological pathological
8
radiation left
8
left ventricle
8
pathological changes
8
medium-dose carbon
8

Similar Publications

CT-guided adaptive radiotherapy (ART) for the treatment of pancreatic adenocarcinoma is rapidly increasing and has been shown to provide advanced treatment tools comparable to magnetic resonance imaging (MRI)-guided adaptive therapy. Here, we provide the first case report of a local pancreatic recurrence treatment after definitive resection using cone beam computed tomography (CBCT)-guided ART (CT-guided ART) enabled by HyperSight imaging (Varian Medical Systems, Inc., Palo Alto, CA, USA) for daily delineation of organs-at-risk (OARs) and target to improve the quality of online ART.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create a predictive model for late rectal bleeding in prostate cancer patients undergoing different types of radiotherapy.
  • Candidate predictors were identified from prior research and five logistic regression models were tested based on various dose parameters.
  • Results indicated that certain dosimetric predictors and history of abdominal surgery were significant for predicting the outcome, with some models showing satisfactory internal validation, but external validation is necessary for confirmation.
View Article and Find Full Text PDF

Objectives: Radiotherapy manages pancreatic cancer in various settings; however, the proximity of gastrointestinal (GI) luminal organs-at-risk (OAR) poses challenges to conventional radiotherapy. Proton beam therapy (PBT) may reduce toxicities compared to photon therapy. This consensus statement summarizes PBT's safe and optimal delivery for pancreatic tumors.

View Article and Find Full Text PDF

Exploration of an adaptive proton therapy strategy using CBCT with the concept of digital twins.

Phys Med Biol

January 2025

Department of Radiology Oncology, Emory University, Clifton Rd, Atlanta, Georgia, 30322-1007, UNITED STATES.

This study aims to develop a digital twin (DT) framework to achieve adaptive proton prostate stereotactic body radiation therapy (SBRT) with fast treatment plan selection and patient-specific clinical target volume (CTV) setup uncertainty. Prostate SBRT has emerged as a leading option for external beam radiotherapy due to its effectiveness and reduced treatment duration. However, interfractional anatomy variations can impact treatment outcomes.

View Article and Find Full Text PDF

Development and evaluation of an in-beam PET system for proton therapy monitoring.

Phys Med Biol

January 2025

The Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, Wuhan, Hubei, 430074, CHINA.

Objective: In-beam positron emission tomography (PET) has important development prospects in real-time monitoring of proton therapy. However, in the beam-on operation, the high bursts of radiation events pose challenges to the performance of the PET system.

Approach: In this study, we developed a dual-head in-beam PET system for proton therapy monitoring and evaluated its performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!