Materials or systems demonstrating negative linear compressibility (NLC), whose size increases (decreases) in at least one of their dimensions upon compression (decompression) are very rare. Materials demonstrating this effect in all their dimensions, negative volumetric compressibility (NVC), are exceptional. Here, by liquid porosimetry and neutron diffraction, we show that one can achieve exceptional NLC and NVC values by nonwetting liquid intrusion in flexible porous media, namely in the ZIF-8 metal-organic framework (MOF). Atomistic simulations show that the volumetric expansion is due to the presence of liquid in the windows connecting the cavities of ZIF-8. This discovery paves the way for designing novel materials with exceptional NLC and NVC at reasonable pressures suitable for a wide range of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424282PMC
http://dx.doi.org/10.1021/acs.nanolett.0c04941DOI Listing

Publication Analysis

Top Keywords

liquid intrusion
8
exceptional nlc
8
nlc nvc
8
giant negative
4
negative compressibility
4
liquid
4
compressibility liquid
4
intrusion superhydrophobic
4
superhydrophobic flexible
4
flexible nanoporous
4

Similar Publications

Pulsation noise in the piping system generated by the excitation of the pump source seriously affects the reliability of the pipeline system and mechanical equipment. The active noise control can effectively suppress the low-frequency noise in the liquid-filled pipeline. Active control methods with intrusive secondary sources generally use dynamic pressure sensors or hydrophones to collect signals, which destroy the structure of the pipe.

View Article and Find Full Text PDF

Preparation of halloysite nanotube-based monolithic column for small molecules and protein analysis.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

College of Life Science, Hebei Agricultural University, Baoding, Hebei 071001, China; Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei 071001, China; Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei 071001, China. Electronic address:

s: This study aimed to prepare a new separation medium, silane coupling agent KH570- modified halloysite nanotube (MPS-HNT) monolithic column, with excellent separation performance for small molecular compounds and macromolecular proteins. This was prepared using the principle of redox polymerization with modified HNTs as monomers. The optimal monomer proportion was obtained by optimizing the ratio of monomer, cross-linker, and pore-forming agent, which was evaluated using scanning electron microscopy, nitrogen adsorption, and mercury intrusion.

View Article and Find Full Text PDF

Functional nanocellulose hydrogel with amino acid integration for enhanced Li/Fe separation in LiFePO batteries.

Int J Biol Macromol

January 2025

Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China. Electronic address:

With the rising prevalence of lithium-ion batteries, efficient recovery of metal ions, particularly those potentially released from LiFePO anodes, has become critical. Given that both Fe and Li ions can form electrostatic adsorptive interactions, achieving effective separation of conventional adsorbent materials becomes challenging. This study presents an amino acid-functionalized nanocellulose hydrogel (ANH) synthesized by incorporating L-threonine, which significantly enhances the selective adsorption of Fe in a mixed-ion environment by leveraging coordination differences between Li and Fe.

View Article and Find Full Text PDF

Unveiling urinary extracellular vesicle mRNA signature for early diagnosis and prognosis of bladder cancer.

Theranostics

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

Bladder cancer (BC) ranks as one of the most prevalent cancers. Its early diagnosis is clinically essential but remains challenging due to the lack of reliable biomarkers. Extracellular vesicles (EVs) carry abundant biological cargoes from parental cells, rendering them as promising cancer biomarkers.

View Article and Find Full Text PDF

Acid fracturing fluids can effectively improve the microporous structure of coal, thereby enhancing the permeability of coal seam and the efficiency of gas drainage. To explore the effects of acid fracturing fluids on the pore structure modification of coal samples from different coal ranks, hydrochloric acid-based acid fracturing fluids were prepared and used to soak four types of medium to high-rank coal in an experiment. High-pressure mercury intrusion and liquid nitrogen adsorption techniques results demonstrated that the acid fracturing fluid can effectively alter the pore structure of coal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!