Optimal Solution to the Torsional Coefficient Fitting Problem in Force Field Parametrization.

J Phys Chem A

Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland.

Published: April 2021

Molecular modeling is an excellent tool for studying biological systems on the atomic scale. Depending on objects, which may be proteins, nucleic acids, or lipids, different force fields are recommended. The phospholipid bilayers constitute an example, in which behavior is extensively studied using molecular dynamics simulations due to limitations of experimental methods. The reliability of the results is strongly dependent on an appropriate description of these compounds. There are some deficiencies in the parametrization of intra- and intermolecular interactions that result in incorrect reproduction of phospholipid bilayer properties known from experimental studies, such as temperatures of phase transitions. Refinement of the force field parameters of nonbonded interactions present in the studied system is required to close these discrepancies. Such parameters as partial charges and torsional potential coefficients are crucial in this issue and not obtainable from experimental studies. This work presents a new fitting procedure for torsional coefficients that employs linear algebra theory and compares it with the Monte Carlo method. The proposed algebraic approach can be applied to any considered molecular system. In the manuscript, it is presented on the example of dimethyl phosphoric acid molecule. The advantages of our method encompass finding an optimal solution, the lack of additional parameters required by the algorithm, and significantly shorter computational time. Additionally, we indicate the importance of proper assignment of the partial charges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041298PMC
http://dx.doi.org/10.1021/acs.jpca.0c10845DOI Listing

Publication Analysis

Top Keywords

optimal solution
8
force field
8
experimental studies
8
partial charges
8
solution torsional
4
torsional coefficient
4
coefficient fitting
4
fitting problem
4
problem force
4
field parametrization
4

Similar Publications

AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.

J Cheminform

January 2025

School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.

View Article and Find Full Text PDF

In general, edge computing networks are based on a distributed computing environment and hence, present some difficulties to obtain an appropriate load balancing, especially under dynamic workload and limited resources. The conventional approaches of Load balancing like Round-Robin and Threshold-based load balancing fails in scalability and flexibility issues when applied to highly variable edge environments. To solve the problem of how to achieve steady-state load balance and provide dynamic adaption to edge networks, this paper proposes a new framework that using PCA and MDP.

View Article and Find Full Text PDF

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Blood transfusion plays a vital role in modern medicine, but frequent shortages occur. Ex vivo manufacturing of red blood cells (RBCs) from universal donor cells offers a potential solution, yet the high cost of recombinant cytokines remains a barrier. Erythropoietin (EPO) signaling is crucial for RBC development, and EPO is among the most expensive media components.

View Article and Find Full Text PDF

Scoring Conformational Metastability of Macrocyclic Peptides with Binding Pose Metadynamics.

J Chem Inf Model

January 2025

Department of Modeling and Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States.

Potency optimization of macrocyclic peptides can include both modifying intermolecular interactions and modifying the conformational stability of the bioactive conformation. However, the number of possible modifications is vast. To identify modifications that enhance the stability of the binding conformations in a cost-effective manner, there is a need for a high-throughput in-silico method that scores the conformational stability of these modified molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!