Design of an In-Cell Protein Crystal for the Environmentally Responsive Construction of a Supramolecular Filament.

Angew Chem Int Ed Engl

School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259-B-55, Midori-ku, Yokohama, 226-8501, Japan.

Published: May 2021

Protein assemblies can be designed for development of nano-bio materials. This has been achieved by modulating protein-protein interactions. However, fabrication of highly ordered protein assemblies remains challenging. Protein crystals, which have highly ordered arrangements of protein molecules, provide useful source matrices for synthesizing artificial protein assemblies. Here, we describe construction of a supramolecular filament structure by engineering covalent and non-covalent interactions in a protein crystal. Performing in-cell crystallization of Trypanosoma brucei cysteine protease cathepsin B (TbCatB), we achieved a precise arrangement of protein molecules while suppressing random aggregation due to disulfide bonds. We succeeded in synthesizing bundled filament from the crystals by autoxidation of cysteinyl thiols after the isolation of the crystals from living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202102039DOI Listing

Publication Analysis

Top Keywords

protein assemblies
12
protein
8
protein crystal
8
construction supramolecular
8
supramolecular filament
8
highly ordered
8
protein molecules
8
design in-cell
4
in-cell protein
4
crystal environmentally
4

Similar Publications

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Black carp (Mylopharyngodon piceus) is one of the "four famous domestic fishes" in China and an important economic fish in freshwater aquaculture. A high-quality genome is essential for advancing future biological research and breeding programs for this species. In this study, we aimed to generate a high-quality chromosome-level genome assembly of black carp using Nanopore and Hi-C technologies.

View Article and Find Full Text PDF

DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.

View Article and Find Full Text PDF

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

Chromosome-level de novo genome unveils the evolution of Gleditsia sinensis and thorns development.

Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, China. Electronic address:

Gleditsia sinensis Lam. (G. sinensis) as an important species within the Leguminosae family, has been utilized in Chinese medicine for centuries, and its thorns serve as a chief medicinal ingredient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!