A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A differential evolution-based regression framework for forecasting Bitcoin price. | LitMetric

A differential evolution-based regression framework for forecasting Bitcoin price.

Ann Oper Res

Finance and Accounting Area, Indian Institute of Management Bangalore, Bengaluru, Karnataka 560076 India.

Published: March 2021

This research proposes a differential evolution-based regression framework for forecasting one day ahead price of Bitcoin. The maximal overlap discrete wavelet transformation first decomposes the original series into granular linear and nonlinear components. We then fit polynomial regression with interaction (PRI) and support vector regression (SVR) on linear and nonlinear components and obtain component-wise projections. The sum of these projections constitutes the final forecast. For accurate predictions, the PRI coefficients and tuning of the hyperparameters of SVR must be precisely estimated. Differential evolution, a metaheuristic optimization technique, helps to achieve these goals. We compare the forecast accuracy of the proposed regression framework with six advanced predictive modeling algorithms- multilayer perceptron neural network, random forest, adaptive neural fuzzy inference system, standalone SVR, multiple adaptive regression spline, and least absolute shrinkage and selection operator. Finally, we perform the numerical experimentation based on-(1) the daily closing prices of Bitcoin for January 10, 2013, to February 23, 2019, and (2) randomly generated surrogate time series through Monte Carlo analysis. The forecast accuracy of the proposed framework is higher than the other predictive modeling algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970816PMC
http://dx.doi.org/10.1007/s10479-021-04000-8DOI Listing

Publication Analysis

Top Keywords

regression framework
12
differential evolution-based
8
evolution-based regression
8
framework forecasting
8
linear nonlinear
8
nonlinear components
8
forecast accuracy
8
accuracy proposed
8
predictive modeling
8
regression
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!