Ultra-small and highly dispersive (< 10 nm) iron oxide hydroxide is characterized by some methods. The compound is an efficient and stable catalyst for alcohol oxidation, organic sulfide oxidation, and epoxidation of alkenes in the presence of HO. The electrochemical oxygen-evolution reaction of the iron oxide hydroxide is also tested under acidic, neutral, and alkaline conditions. In the presence of the iron oxide hydroxide, excellent conversions (75-100%) and selectivities of substrates (92-97%), depending on the nature of the sulfide, were obtained. Benzylalcohols having electron-donating and-withdrawing substituents in the aromatic ring were oxidized to produce the corresponding aldehydes with excellent conversion (65-89%) and selectivity (96-100%) using this iron oxide hydroxide. The conversion of styrene and cyclooctene toward the epoxidation in the presence of this catalyst are 60 and 53%, respectively. Water oxidation for the catalysts was investigated at pH 2, 6.7, 12, and 14. The onset of OER at pH 14 is observed with a 475 mV overpotential. At 585 mV overpotential, a current density of more than 0.18 mA/cm and a turnover frequency of 1.5/h is observed. Operando high-resolution visible spectroscopy at pH 14, similar to previously reported investigations, shows that Fe(IV)=O is an intermediate for water oxidation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988159PMC
http://dx.doi.org/10.1038/s41598-021-85672-xDOI Listing

Publication Analysis

Top Keywords

ultra-small highly
8
highly dispersive
8
dispersive iron
4
iron oxide
4
oxide hydroxide
4
hydroxide efficient
4
efficient catalyst
4
catalyst oxidation
4
oxidation reactions
4
reactions swiss-army-knife
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!