Inhibition of Glucose-6-Phosphate Dehydrogenase Activity Attenuates Right Ventricle Pressure and Hypertrophy Elicited by VEGFR Inhibitor + Hypoxia.

J Pharmacol Exp Ther

Department of Pharmacology, New York Medical College, Valhalla, New York (A.K., C.J., S.A.G.); Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom (A.J., I.W.); and Departments of Pharmacology and Internal Medicine and Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama (I.F.M.)

Published: May 2021

Pulmonary hypertension (PH) is a disease of hyperplasia of pulmonary vascular cells. The pentose phosphate pathway (PPP)-a fundamental glucose metabolism pathway-is vital for cell growth. Because treatment of PH is inadequate, our goal was to determine whether inhibition of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, prevents maladaptive gene expression that promotes smooth muscle cell (SMC) growth, reduces pulmonary artery remodeling, and normalizes hemodynamics in experimental models of PH. PH was induced in mice by exposure to 10% oxygen (Hx) or weekly injection of vascular endothelial growth factor receptor blocker [Sugen5416 (SU); 20 mg kg] during exposure to hypoxia (Hx + SU). A novel G6PD inhibitor (-[(3,5)-17-oxoandrostan-3-yl]sulfamide; 1.5 mg kg) was injected daily during exposure to Hx. We measured right ventricle (RV) pressure and left ventricle pressure-volume relationships and gene expression in lungs of normoxic, Hx, and Hx + SU and G6PD inhibitor-treated mice. RV systolic and end-diastolic pressures were higher in Hx and Hx + SU than normoxic control mice. Hx and Hx + SU decreased expression of epigenetic modifiers (writers and erasers), increased hypomethylation of the DNA, and induced aberrant gene expression in lungs. G6PD inhibition decreased maladaptive expression of genes and SMC growth, reduced pulmonary vascular remodeling, and decreased right ventricle pressures compared with untreated PH groups. Pharmacologic inhibition of G6PD activity, by normalizing activity of epigenetic modifiers and DNA methylation, efficaciously reduces RV pressure overload in Hx and Hx + SU mice and preclinical models of PH and appears to be a safe pharmacotherapeutic strategy. SIGNIFICANCE STATEMENT: The results of this study demonstrated that inhibition of a metabolic enzyme efficaciously reduces pulmonary hypertension. For the first time, this study shows that a novel inhibitor of glucose-6-phosphate dehydrogenase, the rate-limiting enzyme in the fundamental pentose phosphate pathway, modulates DNA methylation and alleviates pulmonary artery remodeling and dilates pulmonary artery to reduce pulmonary hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047074PMC
http://dx.doi.org/10.1124/jpet.120.000166DOI Listing

Publication Analysis

Top Keywords

glucose-6-phosphate dehydrogenase
12
pulmonary hypertension
12
gene expression
12
pulmonary artery
12
inhibition glucose-6-phosphate
8
ventricle pressure
8
pulmonary
8
pulmonary vascular
8
pentose phosphate
8
phosphate pathway
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!