Pollen protein and lipid content influence resilience to insecticides in honey bees ().

J Exp Biol

Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, USA.

Published: March 2021

In honey bees (), there is growing evidence that the impacts of multiple stressors can be mitigated by quality nutrition. Pollen, which is the primary source of protein and lipids in bees diets, is particularly critical for generating more resilient phenotypes. Here, we evaluate the relationship between pollen protein-to-lipid ratios (P:Ls) and honey bee insecticide resilience. We hypothesized that pollen diets richer in lipids would lead to increased survival in bees exposed to insecticides, as pollen-derived lipids have previously been shown to improve bee resilience to pathogens and parasites. Furthermore, lipid metabolic processes are altered in bees exposed to insecticides.We fed age-matched bees pollen diets of different P:Ls by altering a base pollen by either adding protein (casein powder) or lipids (canola oil) and simulating chronic insecticide exposure by feeding bees an organophosphate (Chlorpyrifos). We also tested pollen diets of naturally different P:Ls to determine if results are consistent. Linear regression analysis revealed that mean survival time for altered diets was best explained by protein concentration (p =0.04 , adjusted R =0.92), and that mean survival time for natural diets was best explained by P:L ratio (p =0.008 , adjusted R =0.93). Our results indicate that higher ratios of dietary protein to lipid has a negative effect on bee physiology when combined with insecticide exposure, while lower ratios have a positive effect. These results suggest that protein and lipid intake differentially influence insecticide response in bees, laying the groundwork for future studies of metabolic processes and development of improved diets.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.242040DOI Listing

Publication Analysis

Top Keywords

protein lipid
12
pollen diets
12
bees
8
honey bees
8
bees exposed
8
metabolic processes
8
insecticide exposure
8
survival time
8
diets best
8
best explained
8

Similar Publications

Atherosclerotic vascular changes can begin during childhood, providing risk for cardiovascular disease (CVD) in adulthood. Identifiable risk factors such as dyslipidemia accelerate this process for some children. The apolipoprotein B (APOB) gene could help explain the inter-individual variability in lipid levels among young individuals and identify groups that require greater attention to prevent CVD.

View Article and Find Full Text PDF

Limited knowledge exists regarding biomarkers that predict treatment response in Lupus nephritis (LN). We aimed to identify potential molecular biomarkers to predict treatment response in patients with LN. We enrolled 66 patients with active LN who underwent renal biopsy upon enrollment.

View Article and Find Full Text PDF

The monocyte-to-Apolipoprotein A1 ratio (MAR) emerges as a potentially valuable inflammatory biomarker indicative of metabolic dysfunction-associated fatty liver disease (MASLD). Accordingly, this investigation primarily aims to assess the correlation between MAR and MASLD risk. A cohort comprising 957 individuals diagnosed with type 2 diabetes mellitus (T2DM) participated in this study.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a severe neurodegenerative disease, and the most common type of dementia, with symptoms of progressive cognitive dysfunction and behavioral impairment. Studying the pathogenesis of AD and exploring new targets for the prevention and treatment of AD is a very worthwhile challenge. Accumulating evidence has highlighted the effects of fatty acid metabolism on AD.

View Article and Find Full Text PDF

Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!