Background: Pichia pastoris is a powerful and broadly used host for recombinant protein production (RPP), where past bioprocess performance has often been directed with the methanol regulated AOX1 promoter (P), and the constitutive GAP promoter (P). Since promoters play a crucial role in an expression system and the bioprocess efficiency, innovative alternatives are constantly developed and implemented. Here, a thorough comparative kinetic characterization of two expression systems based on the commercial PDF and UPP promoters (P, P) was first conducted in chemostat cultures. Most promising conditions were subsequently tested in fed-batch cultivations. These new alternatives were compared with the classical strong promoter P, using the Candida antarctica lipase B (CalB) as model protein for expression system performance.
Results: Both the P and P-based expression systems outperformed similar P-based expression in chemostat cultivations, reaching ninefold higher specific production rates (q). CALB transcription levels were drastically higher when employing the novel expression systems. This higher expression was also correlated with a marked upregulation of unfolded protein response (UPR) related genes, likely from an increased protein burden in the endoplasmic reticulum (ER). Based on the chemostat results obtained, best culture strategies for both P and P expression systems were also successfully implemented in 15 L fed-batch cultivations where q and product to biomass yield (Y*) values were similar than those obtained in chemostat cultivations.
Conclusions: As an outcome of the macrokinetic characterization presented, the novel P and P were observed to offer much higher efficiency for CalB production than the widely used P-based methanol-free alternative. Thus, both systems arise as highly productive alternatives for P. pastoris-based RPP bioprocesses. Furthermore, the different expression regulation patterns observed indicate the level of gene expression can be adjusted, or tuned, which is interesting when using Pichia pastoris as a cell factory for different products of interest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986505 | PMC |
http://dx.doi.org/10.1186/s12934-021-01564-9 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
D1 S.P. Botkin City Clinical Hospital, Moscow, Russia.
Objectives: To study the predictive role of tumor-associated neutrophils in early luminal HER2-negative breast cancer.
Materials And Methods: This is a retrospective study conducted on 60 women cases aged from 31 to 79 years underwent surgery for luminal HER2-negative ductal breast cancer in tertiary care cancer centre. We first estimated basic morphological signs: tumor size, tumor grade (by Nottingham Histologic Score), tumor infiltrating lymphocytes (TILs), Lymphovascular invasion, hormonal receptors status, proliferative index, and regional lymph nodes metastasis.
FASEB J
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China.
Triglyceride (TG) metabolism is a complex and highly coordinated biological process regulated by a series of genes, and its dysregulation can lead to the occurrence of disorders in lipid metabolism. However, the transcriptional regulatory mechanisms of crucial genes in TG metabolism mediated by enhancer-promoter interactions remain elusive. Here, we identified candidate enhancers regulating the Agpat2, Dgat1, Dgat2, Pnpla2, and Lipe genes in 3T3-L1 adipocytes by integrating epigenomic data (H3K27ac, H3K4me1, and DHS-seq) with chromatin three-dimensional interaction data.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
College of Horticulture, Northwest A&F University, Yangling, 712100, China.
Tomato (Solanum lycopersicum) is an important crop but frequently experiences saline-alkali stress. Our previous studies have shown that exogenous spermidine (Spd) could significantly enhance the saline-alkali resistance of tomato seedlings, in which a high concentration of Spd and jasmonic acid (JA) exerted important roles. However, the mechanism of Spd and JA accumulation remains unclear.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.
Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.
View Article and Find Full Text PDFHead Neck Pathol
January 2025
Joint Pathology Center, Silver Spring, MD, USA.
Eosinophilia is a notable feature in various hematological malignancies, including specific types of leukemias and lymphomas that may occur in the head and neck. In hematologic malignancies, eosinophilia can be primary, driven by genetic abnormalities, or secondary, resulting from cytokine and chemokine production by the neoplastic cells or the tumor microenvironment. This review examines the association between eosinophilia and head and neck hematolymphoid malignancies including Classic Hodgkin lymphoma, T-cell lymphoblastic leukemia, mature T and NK-cell lymphomas, and Langerhans cell histiocytosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!