A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and γ-butyrobetaine via the ABC transport system OpuC. | LitMetric

Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and γ-butyrobetaine via the ABC transport system OpuC.

Microbiology (Reading)

Philipps University Marburg, Department of Biology, Laboratory for Microbiology, Karl-von-Frisch Straße, D-35032 Marburg, Germany.

Published: January 1998

It was found that low concentrations of the naturally occurring and structurally related betaines L-carnitine, crotonobetaine and γ-butyrobetaine conferred a high degree of osmotic tolerance to Kinetic analysis of L-[ C]carnitine uptake in cells grown in minimal medium revealed the presence of a high-affinity transport system with a value of 5 μM and a maximum rate of transport ( ) of 41 nmol min (mg protein). A rise in medium osmolarity moderately increased the maximum velocity [ 71 nmol min (mg protein)] of this transport system, but had little effect on its affinity. Growth and transport studies with a set of strains that carried defined mutations in the previously identified glycine betaine transport systems OpuA, OpuC and OpuD allowed the identification of the ATP-binding cassette (ABC) transport system OpuC as the only uptake route for L-carnitine in Competition experiments with crotonobetaine and γ-butyrobetaine revealed that the OpuC system also exhibited a high affinity for these trimethylammonium compounds with values of 6.4 μM. Tracer experiments with radiolabelled L-carnitine and C-NMR tracings of cell extracts demonstrated that these betaines are accumulated by in an unmodified form. In contrast, the β-substituted acylcarnitine esters acetylcarnitine and octanoylcarnitine both functioned as osmoprotectants for but were found to be accumulated as carnitine by the cells. None of these trimethylammonium compounds were used as sole carbon or nitrogen sources. The results thus characterize L-carnitine, crotonobetaine and γ-butyrobetaine as effective compatible solutes for and establish a crucial role of the ABC transport system OpuC for the supply of with a variety of osmoprotectants.

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-144-1-83DOI Listing

Publication Analysis

Top Keywords

transport system
20
crotonobetaine γ-butyrobetaine
16
abc transport
12
system opuc
12
transport
8
l-carnitine crotonobetaine
8
nmol min
8
trimethylammonium compounds
8
system
6
opuc
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!