As the number of various sensors grows fast in real applications such as smart city and intelligent agriculture, context-aware systems would acquire raw context information from dynamic, asynchronous and heterogeneous context providers, but multi-source information usually leads to the situation uncertainty of the system entities involved, which is harmful to appropriate services, and specially the inconsistency is a kind of main uncertainty problems and should be processed properly. A new inconsistent context fusion algorithm based on back propagation (BP) neural network and modified Dempster-Shafer theory (DST) combination rule is proposed in this paper to eliminate the inconsistency to the greatest extent and obtain accurate recognition results. Through the BP neural network, the situations of entities can be recognized effectively, and based on the modified combination rule, the recognition results can be fused legitimately and meaningfully. In order to verify the performance of the proposed algorithm, several experiments under different error rates of context information sources are conducted in the personal identity verification (PIV) application scenario. The experimental results show that the proposed BP neural network and modified DST based inconsistent context fusion algorithm can obtain good performance in most cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2021051 | DOI Listing |
JAMA Cardiol
January 2025
National Heart and Lung Institute, Imperial College London, United Kingdom.
Importance: Hypertension underpins significant global morbidity and mortality. Early lifestyle intervention and treatment are effective in reducing adverse outcomes. Artificial intelligence-enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for predicting incident hypertension.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Institute for Applied Mathematics, University of Bonn, Bonn, Germany.
Purpose: To quantify outer retina structural changes and define novel biomarkers of inherited retinal degeneration associated with biallelic mutations in RPE65 (RPE65-IRD) in patients before and after subretinal gene augmentation therapy with voretigene neparvovec (Luxturna).
Methods: Application of advanced deep learning for automated retinal layer segmentation, specifically tailored for RPE65-IRD. Quantification of five novel biomarkers for the ellipsoid zone (EZ): thickness, granularity, reflectivity, and intensity.
J Am Chem Soc
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
Nanopore technology holds great potential for single-molecule identification. However, extracting meaningful features from ionic current signals and understanding the molecular mechanisms underlying the specific features remain unresolved. In this study, we uncovered a distinctive ionic current pattern in a K238Q aerolysin nanopore, characterized by transient spikes superimposed on two stable transition states.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
Target identification is a critical stage in the drug discovery pipeline. Various computational methodologies have been dedicated to enhancing the classification performance of compound-target interactions, yet significant room remains for improving the recommendation performance. To address this challenge, we developed TarIKGC, a tool for target prioritization that leverages semantics enhanced knowledge graph (KG) completion.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA.
Monolayer assembly of charged colloidal particles at liquid interfaces opens a new avenue for advancing the additive manufacturing of thin film materials and devices with tailored properties. In this study, we investigated the dynamics of electrosprayed colloidal particles at curved droplet interfaces through a combination of physics-based computational simulations and machine learning. We employed a novel mesh-constrained Brownian dynamics (BD) algorithm coupled with Ansys® electric field simulations to model the transport and assembly of charged particles on a non-spherical droplet surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!