Two new deep-sea species of the genus Laonice belonging to the subgenera Sarsiana and Appelloefia respectively, are described from the Mediterranean Sea. Complete specimens of the subgenus Appelloefia were studied for the first time, and the new information collected raised questions on the boundaries between the subgenera Appelloefia and Norgensia. The presence of characters in L. barcinensis sp. nov. previously considered to be exclusive to each these two subgenera suggests that they should be regarded as synonymous. The name Appelloefia being given precedence here, according to the Principle of the First Reviser. A correction is made regarding the depth range of Laonice rasmusseni Sikorski Pavlova, 2018.

Download full-text PDF

Source
http://dx.doi.org/10.11646/zootaxa.4908.4.5DOI Listing

Publication Analysis

Top Keywords

deep-sea species
8
mediterranean sea
8
species laonice
4
laonice annelida
4
annelida spionidae
4
spionidae mediterranean
4
sea deep-sea
4
species genus
4
genus laonice
4
laonice belonging
4

Similar Publications

Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools.

View Article and Find Full Text PDF

Solenogastres is a group of mollusks with evolutionary and ecological importance. Nevertheless, their diversity is underestimated and knowledge about the distribution of the approximately 300 formally described species is limited. Factors that contribute to this include their small size and frequent misidentification by non-specialists.

View Article and Find Full Text PDF

a new species of deep-sea digenean, parasitizing the gallbladder of the "Bigeye grenadier" ( Günther, 1878) in the deep waters of the southeastern Pacific Ocean is described on the basis of morphological and molecular (28S rRNA) data. The new species is distinguishable from Yamaguti, 1940, the only other member of the genus, by its subterminal oral sucker, the position of the ovary and testes, the larger anterior seminal vesicle compared to the posterior one, and its larger eggs. In addition, the new species is a parasite of a deep-sea fish, whereas is a parasite of shallow-water fish.

View Article and Find Full Text PDF

Niche Partitioning and Intraspecific Variation of Thaumarchaeota in Deep Ocean Sediments.

Environ Microbiol

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Deep-sea sediments contain a large number of Thaumarchaeota that are phylogenetically distinct from their pelagic counterparts. However, their ecology and evolutionary adaptations are not well understood. Metagenomic analyses were conducted on samples from various depths of a 750-cm sediment core collected from the Mariana Trench Challenger Deep.

View Article and Find Full Text PDF

Backward swimming in elongated-bodied abyssal demersal fishes: Synaphobranchidae, Macrouridae, and Ophidiidae.

J Fish Biol

January 2025

Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia.

The deep-sea demersal fish fauna is characterized by a prevalence of elongated-body forms with long tapering tails. Using baited camera landers at depths of 4500-6300 m in the Pacific Ocean, we observed multiple instances of backward swimming using reverse undulation of the slender body in four species: the cutthroat eel Ilyophis robinsae, abyssal grenadier Coryphaenoides yaquinae, and cusk-eels Bassozetus sp. and Barathrites iris.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!