Characteristics of hydrocarbons in hydrothermal products of the Clam hydrothermal field from the Okinawa trough.

Mar Pollut Bull

College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang 524088, China.

Published: June 2021

AI Article Synopsis

  • - The hydrothermal products from the Clam hydrothermal field in the Okinawa Trough were analyzed for hydrocarbon content using gas chromatography-mass spectrometry, revealing a unique distribution pattern of n-alkanes. - The study found that the total concentration of n-alkanes was significantly higher in hydrothermal sediment compared to other samples, with specific carbon isotopic values indicating varying sources of these hydrocarbons. - The findings suggest that the n-alkanes are primarily produced by the metabolic activity of submarine microorganisms, although there may also be an abiogenic (non-biological) contribution to their presence in the hydrothermal products.

Article Abstract

The hydrothermal products of the Clam hydrothermal field from the Okinawa Trough were analyzed by gas chromatography-mass spectrometry to determine abundances of hydrocarbons. The n-alkanes in the hydrothermal products conformed to a bimodal distribution and exhibited an odd-to-even predominance of high molecular weight and an even-to-odd predominance of low molecular weight n-alkanes with maxima at C and C. The total concentration of n-alkanes in hydrothermal sediment was much higher than that in hydrothermal sulfide and altered rock. The carbon isotopic value of individual n-alkanes in hydrothermal sediment was slightly higher than that in pelagic sediment. The concentrations and individual carbon isotopic compositions of n-alkanes suggest that the n-alkanes in hydrothermal products may be mainly the result of the metabolic activity of submarine microorganisms. Additionally, the present results suggest that the abiogenic contribution to source of hydrocarbons in hydrothermal products of the Clam hydrothermal field from the Okinawa Trough should not be ignored.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2021.112277DOI Listing

Publication Analysis

Top Keywords

hydrothermal products
20
n-alkanes hydrothermal
16
products clam
12
clam hydrothermal
12
hydrothermal field
12
field okinawa
12
okinawa trough
12
hydrothermal
11
hydrocarbons hydrothermal
8
molecular weight
8

Similar Publications

Solar energy sources have garnered significant attention as a renewable energy option. Despite this, the practical power conversion efficiency (PCE) of widely used silicon-based solar cells remains low due to inefficient light utilization. In this study, carbon dots (APCDs) were prepared a hydrothermal method using ammonium polyphosphate and -phenylenediamine, then incorporated into a silicone-acrylic emulsion (CAS) to create a luminescent down-shifting (LDS) layer for solar cells.

View Article and Find Full Text PDF

Neuroinflammation plays an indispensable role in neural damages after ICH, responsible for the induced high mortality and poor prognosis. NLRP3 inflammasome, which is known mediated by ROS, has been widely documented to aggravate brain injuries. Therefore, suppressing neural injuries by ROS/NLRP3 pathway may be beneficial in treating ICH.

View Article and Find Full Text PDF

In the search for new ultraviolet (UV) nonlinear optical (NLO) materials, two novel cadmium mixed halide compounds, (NH)CdClF and (NH)CdBrF, are successfully synthesized via hydrothermal methods. These compounds crystallize in the noncentrosymmetric (NCS) space group, R32, and are composed of distorted octahedral [CdXF] (X═Cl or Br) units, which extend into a 3D framework. Remarkably, both compounds demonstrate strong second-harmonic generation (SHG) efficiencies-3.

View Article and Find Full Text PDF

This study, we synthesized a graphene oxide@BiBTC MOF (GO@BiBTC) photocatalyst using a hydrothermal method. The resulting samples were comprehensively characterized using FT-IR, Raman spectra, XRD, SEM, TEM, XPS and UV-Vis spectroscopy. The photodegradation reaction fits the pseudo-first-order kinetics and the deterioration rate constants () value of BiBTC, GO@BiBTC MOF composites were 0.

View Article and Find Full Text PDF

Biopolymer-Derived Carbon Materials for Wearable Electronics.

Adv Mater

January 2025

Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

Advanced carbon materials are widely utilized in wearable electronics. Nevertheless, the production of carbon materials from fossil-based sources raised concerns regarding their non-renewability, high energy consumption, and the consequent greenhouse gas emissions. Biopolymers, readily available in nature, offer a promising and eco-friendly alternative as a carbon source, enabling the sustainable production of carbon materials for wearable electronics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!