The hydrothermal products of the Clam hydrothermal field from the Okinawa Trough were analyzed by gas chromatography-mass spectrometry to determine abundances of hydrocarbons. The n-alkanes in the hydrothermal products conformed to a bimodal distribution and exhibited an odd-to-even predominance of high molecular weight and an even-to-odd predominance of low molecular weight n-alkanes with maxima at C and C. The total concentration of n-alkanes in hydrothermal sediment was much higher than that in hydrothermal sulfide and altered rock. The carbon isotopic value of individual n-alkanes in hydrothermal sediment was slightly higher than that in pelagic sediment. The concentrations and individual carbon isotopic compositions of n-alkanes suggest that the n-alkanes in hydrothermal products may be mainly the result of the metabolic activity of submarine microorganisms. Additionally, the present results suggest that the abiogenic contribution to source of hydrocarbons in hydrothermal products of the Clam hydrothermal field from the Okinawa Trough should not be ignored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2021.112277 | DOI Listing |
Mater Horiz
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Solar energy sources have garnered significant attention as a renewable energy option. Despite this, the practical power conversion efficiency (PCE) of widely used silicon-based solar cells remains low due to inefficient light utilization. In this study, carbon dots (APCDs) were prepared a hydrothermal method using ammonium polyphosphate and -phenylenediamine, then incorporated into a silicone-acrylic emulsion (CAS) to create a luminescent down-shifting (LDS) layer for solar cells.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China.
Neuroinflammation plays an indispensable role in neural damages after ICH, responsible for the induced high mortality and poor prognosis. NLRP3 inflammasome, which is known mediated by ROS, has been widely documented to aggravate brain injuries. Therefore, suppressing neural injuries by ROS/NLRP3 pathway may be beneficial in treating ICH.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
In the search for new ultraviolet (UV) nonlinear optical (NLO) materials, two novel cadmium mixed halide compounds, (NH)CdClF and (NH)CdBrF, are successfully synthesized via hydrothermal methods. These compounds crystallize in the noncentrosymmetric (NCS) space group, R32, and are composed of distorted octahedral [CdXF] (X═Cl or Br) units, which extend into a 3D framework. Remarkably, both compounds demonstrate strong second-harmonic generation (SHG) efficiencies-3.
View Article and Find Full Text PDFRSC Adv
January 2025
Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao Street Ward 1 Go Vap District Ho Chi Minh City Vietnam
This study, we synthesized a graphene oxide@BiBTC MOF (GO@BiBTC) photocatalyst using a hydrothermal method. The resulting samples were comprehensively characterized using FT-IR, Raman spectra, XRD, SEM, TEM, XPS and UV-Vis spectroscopy. The photodegradation reaction fits the pseudo-first-order kinetics and the deterioration rate constants () value of BiBTC, GO@BiBTC MOF composites were 0.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
Advanced carbon materials are widely utilized in wearable electronics. Nevertheless, the production of carbon materials from fossil-based sources raised concerns regarding their non-renewability, high energy consumption, and the consequent greenhouse gas emissions. Biopolymers, readily available in nature, offer a promising and eco-friendly alternative as a carbon source, enabling the sustainable production of carbon materials for wearable electronics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!