Extraction of phenolic compounds from acerola by-products using chitosan solution, encapsulation and application in extending the shelf-life of guava.

Food Chem

Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Rua Duque de Caxias Norte 225, CEP 13635-900, Pirassununga, SP, Brazil; Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Av. Duque de Caxias Norte, 225, 13.635-900 Pirassununga, Brazil; Departamento de Química, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil. Electronic address:

Published: August 2021

Aiming the simplification of the production of chitosan nanoparticles as an encapsulating material, the primary approach of this study was to investigate the extraction of active compounds from acerola-pulp by-products directly in chitosan solution by using tip sonication. The results have shown that chitosan solution can be used as a good solvent, mainly for total phenolic compounds (TPC) extraction (1792.7 mg/100 g of dry by-product). The extract was submitted to ionic gelation process using, as counter-ion, the sodium tripolyphosphate to form loaded nanoparticles with TPC. The suspension was applied as protective coatings on the guavas. The nanoengineered coatings provided an effective barrier that delayed the maturation and maintained the green pigmentation for longer periods along with good firmness. To the best of our knowledge, this was the first study that uses chitosan solution as extraction solvent of TPC from food byproducts in order to facilitate the encapsulation process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.129553DOI Listing

Publication Analysis

Top Keywords

chitosan solution
16
phenolic compounds
8
chitosan
5
extraction
4
extraction phenolic
4
compounds acerola
4
acerola by-products
4
by-products chitosan
4
solution
4
solution encapsulation
4

Similar Publications

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

A catalytic system has been developed, utilizing metal nanoparticles confined within a chitosan‑carbon black composite hydrogel (M-CH/CB), aimed at improving ease of use and recovery in catalytic processes. The M-CH/CBs were characterized by XRD, SEM, and EDX, the M-CH/CB system demonstrated exceptional catalytic activity in producing hydrogen gas (H) from water and methanol, and in reducing several hazardous materials including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,6-dinitrophenol (2,6-DNP), acridine orange (ArO), methyl orange (MO), congo red (CR), methylene blue (MB), and potassium ferricyanide (PFC). Among the tested nanocatalysts, CH/CB showed the highest efficiency for H₂ production, while Fe-CH/CB excelled in contaminant reduction (7.

View Article and Find Full Text PDF

Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles.

View Article and Find Full Text PDF

The grapevine industry is confronted with challenges such as plant stress from environmental factors and microbial infections, alongside the need for sustainable waste management practices. Natural polymers offer promising solutions to these issues due to their biocompatibility, biodegradability, and functional versatility. This review explores the dual role of natural polymers in enhancing the grapevine industry: as protective agents against various stressors and as carriers for the delivery of valuable compounds recovered from grapevine wastes.

View Article and Find Full Text PDF

Fruit Vinegars as Natural and Bioactive Chitosan Solvents in the Production of Chitosan-Based Films.

Polymers (Basel)

December 2024

Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznan, Poland.

Natural fruit vinegars, derived from various fruits, enhance culinary experience and offer potential health benefits due to their bioactive compounds. In this study, fruit vinegars (apple, blackcurrant, and cherry) were used as natural solvents for producing chitosan films, introducing an environmentally friendly approach. Fruit vinegars and chitosan-based solutions were examined for their antioxidant and antimicrobial properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!