Understanding of the mechanism of crystal violet adsorption on modified halloysite: Hydrophobicity, performance, and interaction.

J Hazard Mater

Laboratoire de Structure, Elaboration et Applications des Matériaux Moléculaires (SEA2M), Département de Génie des Procédés, Université de Mostaganem, Algeria.

Published: August 2021

Halloysite was processed at 600 °C and then by acid leaching with HCl solutions of different concentrations, i.e. 0.5, 3 and 5 N (H600-xN; x = 0.5, 3 or 5). The resulting materials underwent chemical, textural, and laser diffraction analyses and were used in crystal violet (CV) adsorption. Bath experiments were conducted to evaluate the parameters influencing adsorption. A hydrophobicity study by adsorption of water/toluene and a spectroscopic investigation by FTIR and Raman were conducted, to understand the interaction mechanism. The affinity for CV is as follows: H600-0.5N (115 mg) > H600-3N (434 mg) > H600-5N (503 mg) > H600-0N (61 mg). The maximum adsorption of H600-0.5N would be explained by optimal hydrophilic and hydrophobic properties. Dealumination leads to the creation of more silanols responsible for hydrophilicity. Dehydroxylation at 600 °C combined with dealumination would induce a partial transformation of silanols into siloxanes which are responsible for organophilicity. The CV-H600-0.5N interaction implies two mechanisms: hydrophobic interactions and hydrogen bond. This study focused on hydrophobic interaction as a non-negligible component governing the interaction of organic contaminants with 1:1 clay minerals, while it was not sufficiently considered in the scientific literature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125656DOI Listing

Publication Analysis

Top Keywords

crystal violet
8
violet adsorption
8
adsorption
5
interaction
5
understanding mechanism
4
mechanism crystal
4
adsorption modified
4
modified halloysite
4
halloysite hydrophobicity
4
hydrophobicity performance
4

Similar Publications

Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae.

View Article and Find Full Text PDF

Cordycepin affects Streptococcus mutans biofilm and interferes with its metabolism.

BMC Oral Health

January 2025

Academy of Medical Engineering and Transform Medicine, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.

Background: Streptococcus mutans (S. mutans) contributes to caries. The biofilm formed by S.

View Article and Find Full Text PDF

Microplastics (MPs) in nature inevitably undergo various aging processes and may exhibit varied interfacial interactions with the coexisted contaminants. Here several discarded disposable polyethylene and polypropylene plastic packaging materials were collected and employed as the raw materials of MPs, and the effects of stimulated UV irradiation and microbial colonization on the variations of surface physicochemical characteristics, including biofilm content, oxygen-containing functional groups, oxygen/carbon ratio, hydrophilicity and surface charge properties were explored. Simultaneously, the adsorption behavior of each MPs on the representative cationic dye crystal violet (CV), as well as the influences of salinity and pH of CV solution, was investigated.

View Article and Find Full Text PDF

Introduction: The mechanism of tannic acid (TA) intervention on methicillin-resistant (MRSA, USA 300) biofilm formation was explored using proteomics.

Methods: The minimum inhibitory concentration (MIC) of TA against the MRSA standard strain USA 300 was determined by two-fold serial dilution of the microbroth. The effects of TA were studied using crystal violet staining.

View Article and Find Full Text PDF

Precise prediction of adsorption in a multicomponent system is vital for successful design of dye-contaminated industrial wastewater treatment processes. The present work looks for the reason behind the failure of the competitive Langmuir model (CLM) to describe adsorption in such systems, while the Langmuir model (LM) successfully describes the process for a single dye solution. With that end, derivations of LM and CLM have been revisited, and a criterion for the universality of active sites has been defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!